教案的步驟安排應合理、清晰,符合學生的學習規律和認知特點。編寫教案時,要明確教學目標,確保教學的針對性和有效性。教案的分享和交流可以促進教師教學經驗的傳承和提高。
1. 閱讀課本 練習止.
2. 回答問題
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學習對數函數時,同學們應從熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
一、提問題
1. 對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明.
二、變題目
1. 試求下列函數的反函數:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數函數的'有關概念
(1)把函數 叫做對數函數, 叫做對數函數的底數;
(2)以10為底數的對數函數 為常用對數函數;
(3)以無理數 為底數的對數函數 為自然對數函數.
2. 反函數的概念
在指數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ;在對數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ,像這樣的兩個函數叫做互為反函數.
3. 與對數函數有關的定義域的求法:
4. 舉例說明如何求反函數.
一、課外作業: 習題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數 的函數值恒為負值的 的取值范圍.
1、使學生掌握的概念,圖象和性質。
(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域。
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質。
(3)能利用的性質比較某些冪形數的大小,會利用的圖象畫出形如的圖象。
2、通過對的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法。
教材分析。
(1)是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究。
(2)本節的教學重點是在理解定義的基礎上掌握的圖象和性質。難點是對底數在和時,函數值變化情況的區分。
(3)是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究。
教法建議。
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是。
(2)對底數的限制條件的理解與認識也是認識的重要內容。如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來。
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
3.通過參與編題解題,激發學生學習的愛好.
教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復習提問
等差數列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.
二.主體設計
通項公式反映了項與項數之間的函數關系,當等差數列的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數列中,首項,公差,則-397是該數列的第x項.
(2)已知等差數列中,首項,則公差
(3)已知等差數列中,公差,則首項
這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數列中,求的值.
(2)已知等差數列中,求.
若學生的題目只有這兩種類型,教師可以小結(請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數列的一個條件(等式),能否確定一個等差數列?學生回答后,教師再啟發,由這一個條件可得到關于和的二元方程,這是一個和的`制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).
如:已知等差數列中,…
由條件可得即,可知,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發現規律,完善問題(3)已知等差數列中,求;;;;….
類似的還有
(4)已知等差數列中,求的值.
以上屬于對數列的項進行定量的研究,有無定性的判定?引出
3.研究等差數列的單調性
4.研究項的符號
這是為研究等差數列前項和的最值所做的預備工作.可配備的題目如
(1)已知數列的通項公式為,問數列從第幾項開始小于0?
(2)等差數列從第x項起以后每項均為負數.
三.小結
1.用方程思想熟悉等差數列通項公式;
2.用函數思想解決等差數列問題.
四.板書設計
等差數列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數列的單調性
4.研究項的符號
(1)理解函數的概念;。
(2)了解區間的概念;。
2、目標解析。
(2)了解區間的概念就是指能夠體會用區間表示數集的意義和作用;。
【問題診斷分析】在本節課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養學生的抽象概況能力,其中關鍵是理論聯系實際,把抽象轉化為具體。
【教學過程】。
問題1:一枚炮彈發射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發:在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養學生的歸納、概況的能力。
了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式。
會從實際情境中抽象出一元二次不等式模型.
通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯系.
會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規劃問題。
會從實際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組.
會從實際情境中抽象出一些簡單的二元線性規劃問題,并能加以解決.
一、教學目標:
1、識記消費的不同類型,消費結構的含義以及恩格爾系數的含義。
2、理解影響消費水平的因素,最主要的是收入水平和物價水平;理解錢貨兩清的消費,貸款消費以及租賃消費時商品所有權和使用權的變化。
教學重難點。
教學重點、難點:
影響消費水平的因素。
恩格爾系數的變化的含義。
教學過程。
教學內容:
(一)情景導入:
學生活動:就日常生活的體驗得出相應的回應,例如:買文具、食堂吃飯、買零食、買衣服、電話費等日常消費活動。
教師活動:多媒體課件展示豐富多彩的消費活動,其中主要集中于學生可能并有實際經驗的消費內容。
所以我們這節課就影響消費的因素及消費的類型相關討論。
(二)情景分析:
探究活動一:如何安排生活費?
學生活動:互相安排并討論各自的消費活動或消費內容,發現其中的區別。
(1)收入。
教師活動:設問解疑。
同學們是否發現各自的消費有什么不同?而造成這個區別的原因在此主要是什么?
教師講解:收入是消費的前提與基礎。在其他條件不變的情況下,人們的可支配收入越多,對各種商品和服務的消費量就越大。收入增長較快的時期,消費增長也較快;反之,當收入增長速度下降時,消費增幅也下降。當前收入直接影響消費,預期消費則影響消費信心,當預期消費樂觀時,消費信心就強;預期消費較低時,消費信心就弱。所以,要提高居民的生活水平,必須保持經濟的穩定增長,增加居民收入。
(2)物價水平。
教師活動:影響消費的因素除了收入水平還有沒有其他了呢?
學生活動:就材料進行相應的討論,得出初步的結論,消費活動還受到物價水平的影響。
教師講解:消費品價格的變化會影響人們的購買能力。人們在一定時期的總收入是有限的,如果消費品價格上漲,會引起購買力下降,因而消費需求就降低。反之,則購買力提高,消費需求就增加。因此,物價的穩定對保持人們的消費水平,安定生活和穩定社會具有重要意義。正是由于這個原因,穩定物價才成為國家宏觀調控的重要目標。
教師:雖然我們是用同學們的消費活動做的說明,但要明白家庭消費的影響因素也是同樣的道理。我們在考察了總體消費狀況的前提下,接著來討論一個具體的消費案例:
探究活動二:小君的苦惱。
(1)按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
教師活動:按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
租賃消費也是一種比較常見的消費方式,我們可以通過租賃的方式使商品的所有權不發生變更,而獲得該商品在一定期限的使用權。
貸款消費是一種新興的消費方式,主要用于購買大宗耐用消費品及服務。因為這些消費品超出消費者當前的支付能力,因而預支自己未來的收入,來滿足當前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費的交易方式,其消費品的所有權與使用權沒有完全轉移。在消費者按照約定按時還貸的前提下,消費品的所有權與使用權逐漸發生轉移,直至還完貸款為止,其所有權與使用權才徹底轉移到消費者手里。
貸款消費不僅滿足了消費者的生活需要,提高了消費者的生活質量,而且促進了經濟的發展,特別是我國經濟發展進入買方市場后,貸款消費對擴大內需,拉動經濟的增長起來重要的作用。所以,我們要轉變傳統的消費觀念,以積極的態度來對待貸款消費,通過貸款消費滿足來滿足當前的需要,通過生活質量。當然,在貸款消費是也要考慮自己的償還能力,還要講究信用,按時還貸。
學生活動:就相關情境進行討論,做出自己的選擇并給出相應的解釋理由。
(2)按消費對象分,消費分為有形商品消費和勞務消費。
教師活動:按消費對象分,消費分為有形商品消費和勞務消費,有形商品消費消費的是有形的商品,而勞務消費消費的是無形的服務。
萬事大吉了!大家知道小君已經達到哪種消費層次了嗎?
生存資料消費?發展資料消費?享受資料消費?
學生活動:討論并回答相應問題,得出享受資料消費的結論。
(3)按消費的目的不同,可分為生存資料消費、發展資料消費和享受資料消費。
教師活動:按消費的目的不同,可分為生存資料消費、發展資料消費和享受資料消費。其中生存資料消費是最基本的消費,滿足較低層次的衣食住用行的需要;發展資料消費主要指滿足人們發展德育、智育等方面需要的消費;享受資料消費滿足人們享受的需要。隨著經濟水平的提高,發展資料和享受資料消費將逐漸增加。
探究活動三:考查自己家里的消費結構。
學生活動:認真閱讀并討論得出結論家庭消費的不同內容體現了不同的消費水平。
(1)消費結構。
教師活動:多媒體展示近幾年社會的消費現狀,例:假日旅游、電子產品、汽車等。引導學生通過不同層面的直觀感受來了解消費結構的變化。
要了解家庭消費水平先要知道一個概念就是消費結構,是指人們各類消費支出在消費總支出中所占的比重。消費結構會隨著經濟的發展、收入的變化而不斷變化,變化的方向遵循由生存需要到發展需要再到享受需要的順序。
(2)恩格爾系數。
教師活動:恩格爾系數指食品支出占家庭總支出的比重,用公式表示:恩格爾系數=食品支出費用/各項消費總支出費用×100%。一般恩格爾系數越大,越影響其他消費支出,特別是影響發展資料和享受資料的增加,限制消費層次和消費質量的提高,因此生活水平就越低,相反恩格爾系數減小,生活水平就提高,消費結構會逐步改善。恩格爾系數是消費結構研究中的重要概念,在國際上受到普遍承認和重視。
國際上甚至用它作為區分國際間消費結構層次高低的最一般標準。聯合國糧農組織在20世紀70年代中期提出劃分窮國富國的標準:恩格爾系數在60%以上為絕對貧困國家;50%~59%的國家為勉強度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。
我國這幾年經濟結構有了很大改善,消費水平不斷提高。
(三)情景回歸:
教師組織學生反思總結本節課的主要內容,并進行當堂檢測,了解教學反饋。
將本文的word文檔下載到電腦,方便收藏和打印。
一、除了高等植物成熟的篩管細胞和哺乳動物成熟的紅細胞等極少數細胞外,真核細胞都有細胞核。植物的導管細胞是死細胞(主要運輸水分、無機鹽),篩管主要運輸有機物。
二、細胞核控制著細胞的代謝和遺傳。
三、細胞核的結構。
2.染色質(主要由dna和蛋白質組成,dna是遺傳信息的載體。
4.核孔(實現核質之間頻繁的物質交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(蛋白質和mrna)出入細胞需要能量和載體,細胞代謝越旺盛,核孔越多,核仁體積越大。
四、細胞分裂時,細胞核解體,染色質高度螺旋化,縮短變粗,成為光學顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結束時,染色體解螺旋,重新成為細絲狀的染色質。染色質(分裂間期)和染色體(分裂時)是同樣的物質在細胞不同時期的兩種存在狀態。
五、細胞既是生物體結構的基本單位,又是生物體代謝和遺傳的基本單位。
對課堂教學的有效性,我們不僅應該有全面衡量的意識,也應該有從定性與定量兩方面衡量的意識。就當前課堂教學而言,我們要特別關注數學教學層次問題。以《平面向量基本定理》為例,采用“一個定理+三項注意”的模式,重點放在學生接受平面向量的基本定理和例題、習題的模仿與訓練上,是一個層次;告訴學生平面向量基本定理蘊含著分解、轉化思想,重點放在定理的得出和證明的方法上是另一層次;理解平面向量基底的作用與意義,師生共同探討為什么要研究這個問題,怎樣研究這個問題,搞清楚其中體現的數學思維是更高的一個層次;如果學生能由平面向量基本定理體會到“事物是相互聯系、相互轉化的”,“事情是由一定的基本要素構成的,可以用構成它的基本要素來表示”,“研究事物可轉化為對它的基本要素的研究”,有助于養成理性地、有條理地思考和探究問題的習慣,那就更理想。
教學目標。
1、理解平面向量的坐標的概念;。
2、掌握平面向量的坐標運算;。
3、會根據向量的坐標,判斷向量是否共線.
教學重難點。
教學重點:平面向量的坐標運算。
教學難點:向量的坐標表示的理解及運算的準確性.
教學過程。
平面向量基本定理:。
什么叫平面的一組基底?
平面的基底有多少組?
引入:。
1.平面內建立了直角坐標系,點a可以用什么來。
表示?
2.平面向量是否也有類似的表示呢?
1.閱讀課本練習止。
2.回答問題:
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3.完成練習。
4.小結。
二、方法指導。
1.在學習對數函數時,同學們應從熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
2.本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開,同學們在學習時應該把兩個函數進行類比,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質。
一、提問題。
1.對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明。
二、變題目。
1.試求下列函數的反函數:
(1);(2);(3);(4)。
2.求下列函數的定義域:。
(1);(2);(3)。
3.已知則=;的定義域為。
1.對數函數的有關概念。
(1)把函數叫做對數函數,叫做對數函數的底數。
(2)以10為底數的對數函數為常用對數函數。
(3)以無理數為底數的對數函數為自然對數函數。
2.反函數的概念。
在指數函數中,是自變量,是的函數,其定義域是,值域是;在對數函數中,是自變量,是的函數,其定義域是,值域是,像這樣的兩個函數叫做互為反函數。
3.與對數函數有關的定義域的求法:
4.舉例說明如何求反函數。
一、課外作業:習題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數的函數值恒為負值的的取值范圍。
教學目標。
理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導過程,掌握其應用.
教學重難點。
1.教學重點:兩角和、差正弦和正切公式的推導過程及運用;。
2.教學難點:兩角和與差正弦、余弦和正切公式的靈活運用.
教學過程。
教學目標。
3.讓學生深刻理解向量在處理平面幾何問題中的優越性.
教學重難點。
教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學難點:如何將幾何等實際問題化歸為向量問題.
教學過程。
由于向量的線性運算和數量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
思考:
運用向量方法解決平面幾何問題可以分哪幾個步驟?
運用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運算,研究幾何元素之間的關系,如距離、夾角等問題;。
(3)把運算結果“翻譯”成幾何關系.
一、課前準備。
問題3:因為三角形的內角和是,四邊形的內角和是,五邊形的內角和是。
……所以n邊形的內角和是。
新知1:從以上事例可一發現:
叫做合情推理。歸納推理和類比推理是數學中常用的合情推理。
新知2:類比推理就是根據兩類不同事物之間具有。
推測其中一類事物具有與另一類事物的性質的推理、
簡言之,類比推理是由的推理、
新知3歸納推理就是根據一些事物的',推出該類事物的。
的推理、歸納是的過程。
例子:哥德巴赫猜想:
觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。
16=13+3,18=11+7,20=13+7,……,
50=13+37,……,100=3+97,
猜想:
歸納推理的一般步驟。
1通過觀察個別情況發現某些相同的性質。
2從已知的相同性質中推出一個明確表達的一般性命題(猜想)。
※典型例題。
例1用推理的形式表示等差數列1,3,5,7……2n-1,……的前n項和sn的歸納過程。
變式1觀察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……。
你能猜想到一個怎樣的結論?
變式2觀察下列等式:1=1。
1+8=9,
1+8+27=36,
1+8+27+64=100,
……。
你能猜想到一個怎樣的結論?
例2設計算的值,同時作出歸納推理,并用n=40驗證猜想是否正確。
變式:(1)已知數列的第一項,且,試歸納出這個數列的通項公式。
例3:找出圓與球的相似之處,并用圓的性質類比球的有關性質、
圓的概念和性質球的類似概念和性質。
圓的周長。
圓的面積。
圓心與弦(非直徑)中點的連線垂直于弦。
與圓心距離相等的弦長相等,
※動手試試。
2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。
3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。
三、總結提升。
※學習小結。
1、歸納推理的定義、
1、教材(教學內容)。
2、設計理念。
3、教學目標。
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、
4、重點難點。
重點:任意角三角函數的定義、
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、
5、學情分析。
6、教法分析。
7、學法分析。
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發現過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數學思想,培養學生的探索發現能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
1.要讀好課本。
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規作業或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。
2.要記好筆記。
首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖??茖W的記筆記可以提高45分鐘課堂效益。
3.要做好作業。
在課堂、課外練習中培養良好的作業習慣也很有必要.在作業中不但做得整齊、清潔,培養一種美感,還要有條理,這是培養邏輯能力的一條有效途徑,必須獨立完成。同時可以培養一種獨立思考和解題正確的責任感。在作業時要提倡效率,應該十分鐘完成的作業,不拖到半小時完成,疲疲憊憊的作業習慣使思維松散、精力不集中,這對培養數學能力是有害而無益的。
4.要寫好總結。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高?!安粫偨Y的同學,他的能力就不會提高,挫折經驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學習要經??偨Y規律,目的就是為了更一步的發展。
通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業,寫好每個單元的總結)的學習習慣。
1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
來自 FANWEN.chAZIDiaN.cOm
2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
小編推薦:高一數學怎么學才能學好。
3.課后認真復習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。
4.通過習題鞏固。數學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質變嘛。這個并非要各位打題海戰術,只要求各位做到熟練為止。
5.錯題反復研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復研究,避免再次出錯。
了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
了解數列是自變量為正整數的一類函數。
(2)等差數列、等比數列。
理解等差數列、等比數列的概念。
掌握等差數列、等比數列的通項公式與前項和公式。
能在具體的問題情境中,識別數列的等差關系或等比關系,并能用有關知識解決相應的問題。
了解等差數列與一次函數、等比數列與指數函數的關系。
版權聲明:此文自動收集于網絡,若有來源錯誤或者侵犯您的合法權益,您可通過郵箱與我們取得聯系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwendaquan/qitafanwen/939441.html