讀后感是對讀書過程中所獲得的體驗和感悟進行回顧和總結的一種方式,有助于我們深化對作品的理解。1.以下是小編為大家收集的讀后感范文,希望能給大家在寫讀后感時提供一些建議和啟發。
本書《大數據時代》出自維克托·邁爾-舍恩伯格,是最早洞見大數據時代發展趨勢的數據科學家之一,也是最受人尊敬的權威發言人之一。舍恩伯格教授在《大數據時代》中提出:“大數據是指不用隨機分析法這樣的捷徑,而采用所有數據的方法?!标U述大數據是一個比較的概念,它是在人類過去運用小數據庫隨機抽樣獲得分析結果比較而來,它的關鍵是在“大”,數據存儲量越大,價值越顯著。大數據的核心作用在于“預測”,引申出“規劃”與“解決方案”,也就是我們說的“算法”。書中展示了谷歌、微軟、亞馬遜、ibm、蘋果、facebook、twitter、visa等大數據先鋒們最具價值的應用案例。
在現今的社會,大數據的應用越來越彰顯他的優勢,它占領的領域也越來越大,電子商務、o2o、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。有了大數據這個概念,對于消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。就我個人體會。大數據產生最直觀的價值:一是時間,二是金錢。要知道“時間就是金錢,效率就是生命?!?/p>
大數據帶給我們的三個顛覆性觀念轉變:采樣數據向全部數據轉變;精確制導向方向引領轉變;因果關系向相關關系轉變。
1.不再局限隨機樣本,而是全體數據:在大數據時代,我們有更多的數據可以分析,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴于隨機采樣,這也是通過大數據打通的傳統壁壘。
2.不再局限精確性數據,而是混雜性數據:以前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著數據的積累,數據庫的完善,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向,適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力。
3.不再局限因果關系數據,而是相關關系數據:在大數據時代,我們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系,相關關系雖然不能準確地告訴我們事件發生的原因,但是它會提醒我們事件的發生。
思考:大數據在農業領域建設。近年來,我國數字農業發展方興未艾,從北大荒千里沃野的無人駕駛農機作業,到浙江烏鎮的刷臉入住農家樂、西安阿里的智慧大腦,數字農業正在悄然地助推傳統農業發展。從理想狀態來說,我認為數字農業就是有一塊地,你種什么,種多少,施什么肥,打什么藥,賣給誰,都用數據來表達,以大數據來支撐決策,通過信息化、數字化提供全程社會化服務。具體講,數字農業是指以數據為關鍵要素,以數字技術與農業融合發展為重點,以數字產業化、產業數字化為路徑,實現農業生產過程及全產業鏈數字化表達、數字化設計、數字化管理的新興農業形態。
當前,我國已進入加快發展數字農業的新時期,發展數字農業有條件、有需求,恰逢其時,勢在必行。人類社會經歷了農業革命、工業革命,如今正在經歷信息革命?,F代信息技術日新月異,全球數據爆發增長、海量集聚,數字經濟高歌猛進?;ヂ摼W、物聯網、大數據、云計算等數字技術加速向農業全方位滲透,讓傳統農業插上數字化的翅膀,培育了經濟新增長點和發展新引擎,數據對農業發展的放大、疊加、倍增作用正在快速釋放。這將為農業發展帶來深刻的變革,創造千載難逢的歷史機遇。(張洋)。
“經驗主義”是指形而上學的思想方法和工作作風,其特點是在觀察和處理問題的時候,從狹隘的個人經驗出發,不是采用聯系、發展、全面的觀點,而是采取鼓勵、精致、片面的觀點。在教學中,我們有時會憑借以往經驗認定本節課學生的起點,從而制定教學目標、重難點以及教學過程。這往往忽略了上屆學生和這屆學生是有差異的,這班學生和另一班學生也是存在差異的,那如何準確把握學生的起點呢?我想可以借助前測數據,它可以為有效教學指明了方向。
如教學“復式統計表”時,前期查找資料的時候就發現早在一年級上冊p96的時候學生就見過復式統計表,意讓學生初步認識統計表,滲透統計思想。而二三年級的書中練習也多有涉及,就是這種復式統計表沒有“表頭”,生活中的復式統計表也很多。既然在以前練習時碰到這么多次復式統計表,學生對復式統計表到底認識多少呢?我們對157名學生進行這樣的調查(如下圖),第1題:像上表這樣的統計表以前見過嗎?見過約占65%,沒見過約占35%,學生在練習中碰到過、生活中也經??匆?,但還是約35%的學生回答自己沒見過,說明學生平時在看這個復式統計表的時候就浮于表面,所以這節課我們重點應該讓學生經歷復式統計表的產生過程,加深學生對復式統計表的印象。第2題:上表中的16表示什么意思?能完整表達出二班身高在130~139厘米的學生有16人,約占41%;表達一半,如二班16人,或130~139厘米16人,約占22%,其他約占37%,真正能正確讀懂復式統計表的學生一半不到,需要在課中進行讀圖方法的指導。而知道這個表叫做復式統計表的學生不到20%。
“除了上帝,任何人都必須用數據來說話?!薄@是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對于有些人來說,數據無意義,而對于有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例——奧巴ma建設“前所未有的開放政府”的雄心、公共財政透明的曲折、《數據質量法》背后的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,以及云計算、facebook和推特等社交媒體、web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著于個人隱私的保護,卻又不遺余力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那么,政治、制度、生活將更加清明,事故、腐朽將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用于教學的鮮活案例。
最近鬧的沸沸揚揚的“斯諾登事件”讓我想起前段時間的暢銷書《大數據時代》。
維克托邁爾舍恩伯格在《大數據時代》一書中,首先給出了“大數據”的含義:你的一個習慣動作,你的一次消費行為,你的一份就診記錄……文字、方位、溝通等一切事物皆可以量化為數據,不僅人類生產和生活中“有意義”的信息海量產生,相比以往呈幾何數級的爆炸式增長,“無意義”的數據的膨脹速度也同樣驚人。
數據采集存儲技術讓所有的一切信息都可能被數據化,互聯網特別是移動互聯網技術讓所有的數據可以串聯起來,無遺漏數據分析技術幾乎可以讓所有的數據都派上用場?!按髷祿r代”,沒有了“有意義”信息和“無意義”信息的邊界,誰能得到信息并善于利用信息,誰就會搶占先機?!按髷祿r代”不僅影響著我們每一個人,甚至連世界經濟格局也在醞釀著巨大變革。因此,《大數據時代》的作者認為,大數據從根本上改變我們認識世界和改變世界的方式,開啟了一次重大的時代轉型。
歷史是一面鏡子,照向未來。毫無疑問,已有的大數據也屬于歷史的范疇,但大數據時代卻是指向未來的。大數據時代,我們分析的數據因為“大”,擺脫了傳統對隨機采樣的依賴,而是面對全體數據;因為所有信息都是“數”,可以不再糾結具體數據的精確度,而是坦然面對信息的混雜;總量每兩年就可以翻番,而且這一趨勢還在加速。倘若能夠更有效地組織和使用大數據,人類將得到更多的機會發揮數據對社會發展的巨大推動作用。研究證明,人類行為93%是可以預測的,成為“已經發生的未來”。
大數據時代,決策將日益基于數據和分析而作出,而并非基于經驗和直覺。雖然目前大數據預測的還只是參考答案,不是最終答案,但其威力已經顯現。在《大數據時代》中,作者舉的3個例子令人印象特別深刻。
一是谷歌僅憑網民留下的相關痕跡,就能得出與事實相符度高達97%的結論,20xx年比疾控中心提前兩周、具體到了特定的地區和州、準確預測了甲型h1n1流感的爆發。20xx年,又成功預測了美國流感的暴發。
二是美國總統20xx年的選舉,競選團隊里設置了首席數據科學家,他利用facebook和twitter進行數據分析,不但利用社交媒體來發布信息,幫助美國總統團隊定位目標選民,甚至篩選出一些潛在的競選志愿者。
三是微軟公司通過大數據分析處理,對新一屆奧斯卡金像獎作出“預言”,結果除“最佳導演”外,其余13項大獎全部命中。
正如維克托教授所說,我們目前看到的大數據和大數據應用,還只是“冰山的一角”。一定程度上,大數據就是新財富,價值堪比石油,正因為如此,賽門鐵克公司的調研報告顯示,全球企業的信息存儲總量年增67目前包括谷歌、舊m、微軟、emc,惠普,以及我國的百度、騰訊、阿里巴巴等眾多巨頭,已早早開始布局大數據,為在即將來臨的大數據時代做好競爭鋪墊。
大數據已經滲入到了生活的方方面面,將逐漸成為現代社會基礎設施的一部分,就像公路、鐵路、港口、水電和通信網絡一樣不可或缺。更有人說,大數據是繼邊防、海防、空防之后的第四個大國博弈的空間。美國美國總統政府已經把“大數據”上升到了國家戰略的層面,投資2億美元啟動“大數據研究和發展計劃”。
大數據時代,可以讓人成為上帝,通過各數據匯總,俯瞰世界中你想知道的任何一面。大數據時代,也可以讓你困擾不堪,因為你面臨個人隱私被不斷泄露和基于數據預測偏見的麻煩和危機。美國國家安全局和聯邦調查局于2007年啟動了一個代號為“棱鏡”的秘密監控項目,劃直接進入美國網際網路公司的中心服務器里挖掘數據、收集情報,包括微軟、雅虎、谷歌、蘋果等在內的9家國際網絡巨頭皆參與其中。報道刊出后外界嘩然。保護公民隱私組織予以強烈譴責,表示不管美國總統政府如何以反恐之名進行申辯,不管多少國會議員或政府部門支持監視民眾,這些項目都侵犯了公民基本權利。
因此,維克托教授在《大數據時代》中表達了“數據主宰一切”的隱憂,并提出了“責任與自由并舉”的信息管理設想,這也是我們在擁抱大數據時代時必須思考和解決的問題。
“大數據”一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。
作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。
書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。
為什么是清新的呢?因為書中的內容仿佛向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處于網絡時代,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到“猜你喜歡”的欄目、出現谷歌搜索與流感預測、farecast與飛機票價預測系統等,這些事情的達成全來自于那些曾被忽略的大數據同時也在證明“預測,大數據的核心”這句話,為我們的生活創造了前所未有的可量化的維度??吹綍羞@部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像“猜你喜歡”欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網絡時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現?!氨举|上世界是由信息構成的”,面對這句話時,大數據時代仿佛就在眼前。
在感受驚嘆著大數據能為我們做到以往無法想象的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言“我們時刻暴露在‘第三只眼’下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什么都知道”,而且利用大數據我們可以預測許多事情并且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年后就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什么?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。
于是我繼續去探索作者對這問題的思考?!案蟮臄祿谟谌吮旧怼?,作者還說“我們是在創造更好的未來”,也說“在一個預測的時代里,人類的自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本”。人類學家克利福德吉爾茲曾說:“努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來?!边@些話語仿佛是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背后對人溫暖的光芒。
面對時代的變革,我會為堅守內心深處的自由意志而努力并“擁抱大數據”。
將本文的word文檔下載到電腦,方便收藏和打印。
舍恩伯格的《大數據時代》被人推崇為最佳書籍,今年安泰讀書會的重頭戲。雖然主講人最后放了個香港大黃鴨般的鴿子,但現場討論氛圍依舊非常熱烈——而且還是在沒幾個人讀完的情況下,也就意味著——大數據對我們的影響,已經深入到生活的方方面面。
無處不在的大數據:各種云計算,谷歌的神通,亞馬遜的推送,天涯人肉,微博萬能等等等等,我們掌握了新的工具,也獲取了以前從未有過的各種信息。大數據拉近了我們與現實的距離,“地球村”變成了“地球屋”,仿佛所有人所有事物都觸手可及,而這些牛逼哄哄的互聯網巨頭就在客廳展示著世界的每一寸光景。
然而,事實真的是這樣嗎?首先,從應用角度出發,低廉的運算能力和存儲空間,讓以前的樣本分析顯得非常簡陋——一些從全體數據挖掘出來,忽略精確而從大量數據的簡單算法得出來的結論顛覆了常識。但個人覺得,這只是統計學的終極目標——并沒有非常大的跨越,可能終結了回歸分析,有效性驗證等手段,但依舊還是統計。而革命性在于關注相關關系而非因果關系?,F場討論從神學角度挑戰了因果關系的不可能——或者說人類用簡單思考的邏輯來定義因果,以及用之前小數據演繹出大概率事件來推導因果,都是不正確的。真正的因果關系應該屬于上帝的范疇,人類如果真的完全掌握之后,會統治整個宇宙。但我覺得,無需從神學觀點來討論,而可以借鑒量子力學對經典力學的顛覆——在原子層面上,經典力學會失效——那么在大數據層面上,普通的抽樣調查直觀反映會失效。而且從量子力學角度是很難推導經典力學的公式,那么從現在的慣有思維,也難以推導出大數據的因果關系。
當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。
大數據的精髓在于我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。
第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴于隨機采樣(樣本=總體)。
第二個轉變就是,研究數據如此之多,以至于我們不再熱衷于追求精確度。
第三個轉變因前兩個轉變而促成,即我們不再熱衷于尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們“是什么”而不是“為什么”。在大數據時代,我們不必知道現象背后的原因,我們只要讓數據自己發聲。
正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與“過去的經驗或積累的部分知識”相對照,然后進行調整并接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在于使自己保持冷靜。
所以作者稱之為revolution。
公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系于個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全準確,那么我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那么我們也就不需要承擔責任。這不是很諷刺嗎。
扯到這里,順便扯一下,書中另一段關于自由意志的描述。
在哲學界,關于因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那么我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那么就不存在人的自由意志這一說了。----所有的生命軌跡都只是受因果關系的控制了。因此,對于因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。
書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,“哎喲,我居然看過這部電影,想想心里還是有點小激動”,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什么舉動都可以被預測,相當于你完全暴露在太陽光下,換成你,你害怕不。
最后,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。
大數據并不是一個充斥著算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。
無論如何,大家看到這四個是不是有種,不管我上面扯得有沒有道理,通不通順,下面的話,會很有道理的樣子的錯覺(抄襲于《棟篤笑》)ok,無論如何,日子還是得照過。施主,我看你骨骼驚奇,是個練武奇才,最后送上《九陽神功》心法,以后維護世界和平的重任就交給你了。
他強由他強,清風撫山岡。
他橫由他橫,明月照大江。
他自狠來他自惡,我自一口真氣足。
知道"是什么"就夠了,沒必要知道"為什么"。在大數據時代,我們不必非得知道現象背后的原因,而是讓數據自己"發聲"。這個命題是我讀這本書最大的感觸。
對于大多數人來說,這的確是一場思維變革。對于理科學生來說,會認為這是一個錯誤的觀點,因為這無異于否定了他們對世界客觀物理化學規律探索的重要性;對于一名工科學生,其實這并不是一個多么新穎的觀點,因為工科是講求時用性的,如何能更好地利用基本自然科學規律創造社會財富比探索自然科學知識顯得更重要。
這些天來,在讀大數據這本書的同時,也稍微重溫了一下自動控制原理,認識到控制系統中存在明顯的大數據時代思維方式,借讀書交流會之際,與大家分享。
對系統的有效控制需要對系統理解與建模。以一個日常生活中的例子說明。開車的時候一腳油門下去車就飛出去了,但并不知道這一腳油門下去能給多大車速,這就需要駕駛人員的熟練的駕駛技能了,不然超速被開罰單是很正常的。那么,問題就來了:如何能實現速度的自動控制而不用駕駛人員踩油門?這就是控制系統最關鍵的環節——建立系統數學模型。大白話就是知道車速與燃油量的數學關系式。若是以探索為什么的思維模式,不可避免的要列一大堆能量方程、動量方程等物理化學式子,經過繁雜的計算,還是能得到車速和燃油量的數學關系式的。很明顯這是一個繁瑣的過程,因為得知道現象背后的原因。這僅是對于這種簡單的系統,若是對于航空發動機這種復雜的系統,結構工藝過于復雜,分析各部分的物理化學過程是十分困難的,這時候可以通過實驗法得到數學模型。
實驗法主要有時域測定法、頻域測定法和統計相關法。與大數據時代思維最接近的是統計相關法,主要過程是對被研究對象施加某種隨機信號,根據被測對象各參數的變化,采用統計相關法確定被測系統或對象的動態特性。這種方法可以在被測系統或生產過程正常運行狀態下進行在線辨識,測試結果精度較高,但要求采集大量測試數據,并需要相關儀和計算機進行數據計算和處理。
若用開車實例來解釋,此時的系統為汽車動力系統,施加的隨機信號為燃油量,被測對象指車轉速,得到的動態特性就是指車速與燃油量函數關系式,從而不用探求背后的物理化學規律就得到了數學模型。
在沈陽黎明航空公司實習時去過試車間,除了發動機點火后震撼的場景動人心魄,控制室屏幕上海量的數據也同樣引人注目,我想這么多數據無非就是驗證數學模型或直接實驗法得到數學模型,結合航空發動機這種復雜的系統,對于搞控制的人來說,得到數學模型就夠了,現象背后的原因交給研發的人來探索更好。
這一章節,利用馬修莫里導航圖的例子引出了大數據的實踐方式,奇人莫里通過整理航海相關的邊角數據,把整個大西洋按照經緯度劃分了出來,并標注出了溫度、風速和風向,從而發現了洋流,也為船員提供了有效的航海路線,這就是數據的價值體現了。書中也提到了,量化我們周圍的一切,是數據化的核心,將文字變成數據、將方位變成數據,將溝通、情感變成數據,通過大數據,我們會意識到,世界在本質上是由信息構成的。
在工作中,這點也可以作為啟發點,通過對數據的整理,或者說以某種方式采集到相關數據,將數據整理出有價值的信息后,不斷的改善到工作流程、效率、服務方面,也是工作上的創新點。
筆者在書中提到了,數據的潛在價值,并提出了數據創新應用的方法,第一是數據的再利用,數據信息被采集用作特定分析后,在另一個領域或者角色立場下,或許會開發出新的有價值的信息;第二是數據的重組,將不同類別、類型的數據進行重組,產生一個新的數據集合出來,尋找其中的關聯性;第三是數據的擴展,這就需要在記錄數據的同時設計好他的可擴展性;第四是數據的折舊值,數據將會貶值,但是仍會有其潛在價值;第五是數據廢氣,即數據采集時的離散量、離散交互信號,舉例是谷歌與微軟的拼寫檢查;第六是開放數據,數據的開放將會有利于各行各業的使用,并促進全行業數據時代的發展。這其中又提到了數據估值的概念,在數據使用時價值才會體現出來,而不是在占有本身。
根據所提供價值的不同來源,分別出現三種大數據公司,基于數據本身(采集大量數據的公司)、基于技能(提取用戶的需求,給出數據分析結果的公司)、基于思維(挖掘數據新的價值的公司)。
社會在不斷的進步,網絡和大數據也越來越多充斥著我們的生活。與我們息息相關的衣食住行似乎都離不開網絡。近幾年來手機定位打車,網絡支付,網絡購物都變得越來越流行。不論是時尚潮流的年輕人,還是普通的老年人,都學會了運用手機和網絡來改善自己的生活。
大數據是在網絡前提下產生的個人信息,通過網絡大數據可以得出一個人生活的軌跡。同樣的我們生活的信息也會被泄露?!洞髷祿r代》就是在基于這樣的情景下所創造的故事?!洞髷祿r代》第2本延續了第1個的故事,同樣以每一單元短劇的方式,展現了關于大數據對人類影響的故事。同樣的男女主角的壹零工作室,幫助那些受大數據困擾的人們解決問題。
這本書一共有6個故事。前5個故事都反映了。我們現實生活中會遇到的關于大數據的相關問題,有關于金錢的問題,也有關于愛情的問題,還有關于人身安全的問題。種種的這些都暗示著大數據操控著人類生活,對人類生活產生巨大影響。其中最后一個故事是關于男主角李零的。他和姐姐之間小時候產生的誤會,將在這一個故事中揭曉。而整個《大數據時代》也在這個故事之后完結。
作者夏予川作為一位美女作家,她所創造的《大數據時代》這個故事,特別符合當下的社會,作者的思路非常清晰。在講述每一個故事以及解決方案上,也都非常有想法。讀者在閱讀過程中也能感受到很多的快感。壹零事務所的模式也像是一個偵探事務所,幫助人們解決案件,也充滿著很大的樂趣。
在酒店里找wifi比找安全出口更重視…其實這些都是生活中的弊端。雖然說科技的進步,網絡的發展,改進了人類的生活,但過度的依賴使得我們信息越來越多泄露,財產安全和人身安全都受到了威脅。。
其實看完這本書之后,每個人都應該做一下思考,對于在網絡覆蓋下的大數據時代,我們自己該如何保障自己的權益,如何保護自己的信息!
有人說生活像一團亂麻,剪不斷理還亂;我說生活像一團亂碼,盡管云山霧罩惝恍迷離,最后卻總會撥云見日雨過天晴。維克托邁爾舍恩伯格就把這團亂碼叫做大數據,在他的這本書里,試圖給出的就是撥開云霧見青天的玄機。
這玄機說來也簡單,就是放棄千百年來人們孜孜追求的因果關系轉而投奔相關關系。說來簡單,其實卻顛覆了多少代人對真理探求的夢想。我覺得作者是個典型的實用主義者,在美帝國主義萬惡的壓迫下,始終追逐性價比和利益最大化,居然放棄了追求共產主義真理最基本的要求!不像我們在天朝光芒的籠罩下,從小就開始學習和追求純粹的共產主義唯心科學歷史文化知識啦!這或許就是我們永遠無法獲得諾貝爾獎、永遠無法站在科技最前沿的根本原因吧。其實小學時候,我就想過這個問題,相信所有的人都問過類似的問題,例如現在仍然很多人在問,媽的從來沒人知道我每天擺攤賺多少錢,你們他媽的那人均收入四五千是怎么算出來的。中國是抽樣的代表,因為中國人最喜歡用代表來表現整體,最典型的例子莫過于公布的幸福指數滿意指數各種指數永遠都高于你的預期,你完全不清楚他是怎么來的,一直到最后匯總成三個代表,真心不清楚它到底能代表了啥。說這么多顯得自己是個憤青,其實只是想表達“樣本=總體”這個概念在科技飛速發展的今天,在世界的不同角落,還是會體現出不同的價值,受到不同程度的對待及關注。在大數據觀念的沖擊下,我們是不是真的需要將平時關注的重點從事物內在的發展規律轉移到事物客觀的發生情況上。
大數據的出現,必然對諸多領域產生極大的沖擊,某些行業在未來十年必將會得到突飛猛進的發展,而其他一些行業則可能會消失。這是廢話,典型的三十年河東三十年河西的道理,就像三十年前的數理化王子們,現在可能蜷縮在某工廠的小角落里顫顫巍巍的修理機器;就像三十年前職業高中的學生才學財會學銀行,如今這幫孫子一個個都開大奔養小三攢的樓房夠給自己做墓群的了;當然也不乏像生物這種專業,三十年前人們不知道是干啥的,三十年后人們都知道沒事別去干,唯一可惜的是我在這三十年之間的歷史長河中卻恰恰選了這么一個專業,這也是為什么我現在在這寫讀后感而沒有跟姑娘去玩耍的原因。其實乍一看這個題目,我首先想到的是精益生產的過程控制,比如六西格瑪,這其實就是通過對所有數據的分析來預測產品品質的變化,就已經是大數據的具體應用了。而任何事物都會有偏差,會有錯誤,也就是說,這全部的數據中,肯定是要出現很多與總體反應出的規律相違背的個體,但是無論如何這也是該事件中一般規律的客觀體現的一種形式,要遠遠好過從選定的樣本中剔除異常值然后得到的結論。換句話說,也大大減少了排除異己對表達事物客觀規律的影響。就好比是統計局統計中國人民的平均收入一樣,這些數怎么這么低啊,這不是給我們國家在國際社會上的形象抹黑么,刪掉刪掉;這些數怎么這么高啊,這還不引起社會不滿國家動蕩啊,刪掉刪掉。所以說,大數據至少對反應客觀事實和對客觀事實做預測這兩個方面是有非常積極地意義的。而這個新興行業所體現的商機,既在如何利用數據上,又在如何取得數據上。
先說數據的利用,這里面表達的就是作者在通書中強調的對“相關關系”的挖掘利用。相關關系與因果關系便不再贅述,而能夠對相關關系進行挖掘利用的企業其實缺不多,因為可以相信未來的大數據庫就像現在的自然資源一樣,必將因為對利益的追逐成為稀缺資源,而最終落在個別人或企業或部門的手中。想想無論當你想要做什么事情的時候,都有人已經提前知道并且為你做好了計劃,還真是一件甜蜜而又令人不寒而栗的事情。
而對于數據的獲取,我覺得必然是未來中小型企業甚至個人發揮極致的創造力的領域。如何在盡可能降低成本的情況下采集到越多越準確的數據是必然的發展趨勢,鑒于這三個維度事實上都無法做到極致,那么對于數據獲取方式的爭奪肯定將成就更多的英雄人物。
現在回頭從說說作者書中的觀點中想到的,p87中關于巴斯德的疫苗的事件,描述了一個被瘋狗咬傷的小孩,在接種了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。這是個非常有意思的案例,因為小孩被狗咬傷而患病的概率僅為七分之一,也就是說,本事件有85%的概率是小孩根本就不會患病。那么小孩的生命到底是不是巴斯德救的,而這疫苗到底是有效沒效,通過這個事件似乎根本就沒有辦法得到驗證。這就好比某人推出個四萬億計劃,但實際上國際經濟形勢就是好轉,哪怕你只推出個二百五計劃,gdp都會蹭蹭的往上漲,而且又不會帶來四萬億導致的嚴重通脹、產能過剩、房價泡沫等問題。那你說這四萬億到底是救了國還是誤了國?回到我自己的工作領域上來,安全工作,我們一直遵循的方向都是尋找因果關系,典型的從工作前的`風險評估,到調查事故的taproot或者五個為什么,無一不是邏輯推理得到結果的產物。而事實上,如果能做到信息的豐富采集和匯總的話,找出事物之間的相關性,對提高工作環境的安全系數是極為有利的。這個點留著,看看可不可以在未來繼續做進一步研究。
p89說了常用的兩種因果推理方式,分別是憑直覺的快速推理和經過分析的慢速推理。有意思的是很多時候直覺反而比分析來得成功率要更高。作者是想利用這個例子來說明因果關系是多么的不可靠,也想表達出靠分析試驗得到結果的過程成本有多高。其實我是想說,因果關系更多面向的是未來,是沒有對新鮮事物發展做出的預測,而相關關系更多的是對已經存在的事物未來發展的預測,側重點不同而已。
p135里面關于山上小球的描述,它的能量是隱藏的、潛在的。這個觀點我很喜歡,也很悲觀。這正說明了社會上的一種現象。很多人,雖然沒有站在巨人的肩膀上,但是當他們站在親爹干爹的路虎上保險箱上高背椅上時,就是擁有別人無法企及的力量。最近一直在背馬丁老兄的i have a dream,真真切切體會到自由、公正、平等對一個社會,一個國家繁榮發展的重要性。實干興邦、空談誤國,那就先從建立一個公平的社會秩序開始吧!
p163里面大概講述了商家是怎么通過大數據獲得的信息來進行商業推廣的。這里我只想用我的三張信用卡發卡銀行做一下比較。首先是交通銀行,這張卡最近半年幾乎沒怎么用,交行也從來都無聲無息,我考慮已經可以把這張卡扔掉了;去年因為國航里程申請了一張中信的信用卡,但是今年開始也已基本停用,因為之前一段時間一直使用,中信銀行這幾個月頻繁與我聯系,推薦各種業務,多次要給我提供貸款或者提高透支額度,我幾次都想要不然就換回來繼續用它好了;招商銀行的卡也是我用得比較久的一張,近期每月的消費基本都穩定在幾千,偶爾也有一萬多快兩萬的時候,當然這不是因為我消費,只是因為出差比較多自己墊錢多而已,但是招商銀行從未與我聯系給我提升額度,盡管我的月消費額度都已經基本達到信用卡的上限了,有時候甚至不得不使用別家的信用卡。最差的自然是中行,首先是預約了國航金卡的信用卡,結果聯系了兩次我都在出差,就再也不與我聯系了,半年多了我還沒有拿到我的卡,而作為工資卡的借記卡,多年來仍然是每天網上付款最多2000,我的使用記錄明明經常一個月有好幾天都達到2000的頂值,甚至我都主動打過電話要求更改,都給我答復是必須到柜臺辦理。說完這幾個例子,我想中國的銀行業與歐美發達國家銀行的差距就已經是顯而易見了。真的很難以想象這種企業能在世界500強中排名那么靠前,是因為黑了中國人民多少錢。而通過對visa和mastercard的案例描述,則清晰的說明了一個成功的銀行是怎么通過對數據收集進行行為預測,最終改變消費者消費習慣的。
然后想說說關于免費導航等應用的使用。天下沒有免費的午餐,這是亙古不變的真理。你以為你可以只花點流量費就能舒服方便的使用衛星導航了么,你去過的每一個地方,時間,逗留市場都已經被人家記錄下來賣給商家啦,哪天你打車找到一家麥當勞,剛停下車服務員就送上一套板燒雞腿漢堡套餐可樂換陽光橙不加冰的時候你可千萬不要驚訝,因為你已經無時無刻不暴露在別人的監視之下了。
最后想用文中引用的莎士比亞的一句話作為結尾,凡是過去,皆為序曲。
“大數據”在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。下面是小編給大家整理的《大數據時代》600字讀后感,希望能給大家帶來幫助。
讀完《大數據》,我才意識到這并不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背后的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。
我在想,大數據概念對于教育來說會產生什么樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們并不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也并不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注“是什么”比“為什么”要有實際意義得多。而我們的教育恰好需要把注意力從“為什么”轉移到“是什么”上面來,只有如此,才能把教育從為什么發展成“可能成為什么”上來,這會是一次思想上的革命。而對于現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。
如何將數據融入教學,教育者首先通過標準化全科教學處方,實現了教師授課模板和教學內容的標準化,保證每個教學過程和內容是可控的,然后結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。
與此同時,不僅要注重課上的學生資源,在課后還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎么變換,數據如何復雜,我們都不能不去改變自己的`教學去迎合將來的這個大數據時代。
讀完《大數據時代》這本書后,我意識到:我們即將或正在迎接由書面到電子的跳躍之后的又一重大變革。
這本書介紹了大數據時代來臨后,接踵而至的`三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由于大數據時代的到來而推陳出新。前幾年,一家名為farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢?,F在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的h1n1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯后。然而,對于飛速傳播的疾病,google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基于龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是臺風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。于是,商家作了大膽的推測,出現這樣的結果源于兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬于世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪里是自己的家,哪里是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好準備,迎接新時代的到來!
這一章節,利用馬修莫里導航圖的例子引出了大數據的實踐方式,奇人莫里通過整理航海相關的邊角數據,把整個大西洋按照經緯度劃分了出來,并標注出了溫度、風速和風向,從而發現了洋流,也為船員提供了有效的航海路線,這就是數據的價值體現了。書中也提到了,量化我們周圍的一切,是數據化的核心,將文字變成數據、將方位變成數據,將溝通、情感變成數據,通過大數據,我們會意識到,世界在本質上是由信息構成的。
在工作中,這點也可以作為啟發點,通過對數據的整理,或者說以某種方式采集到相關數據,將數據整理出有價值的信息后,不斷的改善到工作流程、效率、服務方面,也是工作上的創新點。
筆者在書中提到了,數據的潛在價值,并提出了數據創新應用的方法,第一是數據的再利用,數據信息被采集用作特定分析后,在另一個領域或者角色立場下,或許會開發出新的有價值的信息;第二是數據的重組,將不同類別、類型的數據進行重組,產生一個新的數據集合出來,尋找其中的關聯性;第三是數據的擴展,這就需要在記錄數據的同時設計好他的可擴展性;第四是數據的折舊值,數據將會貶值,但是仍會有其潛在價值;第五是數據廢氣,即數據采集時的離散量、離散交互信號,舉例是谷歌與微軟的拼寫檢查;第六是開放數據,數據的開放將會有利于各行各業的使用,并促進全行業數據時代的發展。這其中又提到了數據估值的概念,在數據使用時價值才會體現出來,而不是在占有本身。
根據所提供價值的不同來源,分別出現三種大數據公司,基于數據本身(采集大量數據的公司)、基于技能(提取用戶的需求,給出數據分析結果的公司)、基于思維(挖掘數據新的價值的公司)。
世間萬物的復雜性多樣化并非非此即彼那么簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什么語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出"不是因果關系,而是相關關系。"這一論斷時,他在書中還說道:"在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足于僅僅知道“是什么”時,我們就會繼續向更深層次研究的因果關系,找出背后的“為什么”。"[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可"量化",大數據的定量分析有力地回答"是什么"這一問題,但仍然無法完全回答"為什么"。因此,我認為并不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置于數據應用的商業系統中,而沒有把它置于整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最后一節"掌控"中試圖回答,但基本上屬于老生常談。我想,或許凱文.凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:"大數據并不是一個充斥著算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。"謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標準答案,只是參考答案。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就out了。而且人云亦云的居多,不少談論者甚至還沒有認真讀過這方面的經典著作--舍恩佰格的《大數據時代》。維克托.邁爾--舍恩伯格何許人也?他現任牛津大學網絡學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和ibm等全球頂級企業,他是歐盟互聯網官方政策背后真正的制定者和參與者,他還先后擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家"的牛津教授真牛!那么,這位大師說的都是金科玉律嗎?并不一定,讀大師的作品一定要做些功課才好讀懂,如果能做足功課又具備相應的理論功底,就能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分"大數據時代的思維變革"中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對于第一個觀點,我不敢茍同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對于簡單事實進行判斷的數據分析難道也要采集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,并不一定需要全部數據。聯系到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限于目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
。
大數據這幾個字,其實早已經聽了無數遍,但在工作中接觸,其實也就一年多的時間,深深的感覺后悔啊,沒有早點學習這塊的內容,所以趕緊補課。
經過某數據專家的推薦,選擇了《大數據時代》這本書入手。對于技術小白來說,這本書的內容是比較好理解的,主要從思維變革、商業變革、管理變革三個方面講述了大數據給整個時代帶來的變化。書中的例子很多也是大家比較熟悉的例子,所以把這本書當作科普性讀物快速閱讀,是非常適合小白人群的。但對大數據真正的運用,還是得在工作中實踐和總結了。
大數據在消費端的應用,應該是已經起步并逐漸在完善的過程,但在工業領域可能是才剛剛起步,所以這本書我覺得對我的意義,更多的是提醒我,在工作中要時刻想想,是否有哪里是應該用到大數據的?,F在我也沒有特別好的例子給大家,所以只能先把我的讀書筆記分享給各位。如果非要用一句話來總結,我想說:時刻牢記用數據說話,但絕對不能完全依賴數據。
。
最近看了《大數據》一書,有一點感想,在這里和大家分享。
作者在后序中寫 道,這不是一本純粹談技術的書,而是以技術背景探討人和社會關系的書。今天的中國,是一個人口大國、互聯網大國、手機大國,卻不是一個數據大國。書中有這 樣一組調查數據——“麥肯錫公司以20xx年度各國新增的存儲器為基準,對全世界大數據的分布做了一個研究和統計,中國20xx年新增的數據量為250 拍,不及日本的400拍、歐洲的2000拍,和美國的3500拍相比更是連十分之一都沒有達到。國內的大數據步伐急需加快。
《大數據》一書對美國大數據的應用進行了十分詳細的介紹與分析,我印象最深的為兩點。
第一,以海量數據的處理作為政策制定的依據??催@本書的時候,我想到了這兩年很火的一個美國人——斯諾登。在其曝光的“棱鏡”計劃中美政府直接從包括微軟、谷歌、雅虎、facebook、aol、skype以及蘋果在內的國際公司服務器收集信息。美國政府從這些海量數據中尋找自己需要的數據,并以此作為所謂安全政策制定的依據之一。姑且不論媒體對此計劃的口誅筆伐及相應的道德風險,僅從政策制定方面來說,依據于海量數據的政策制定科學性肯定比一般計劃要高得多。
20xx年,雅虎 首席執行沃茲博士在《自然》上發表的《21世紀的科學》中提到,得益于計算機技術和海量數據庫的發展,我們每個人在現實世界中的活動得到前所未有的記錄, 這種記錄也更為細致,為社會科學的定量分析提供了極為豐富的數據。打個比方,從你的qq空間、微博、微信中一個普通朋友都能了解到你在哪兒、做了哪些事 情、現在的狀態是什么,而新聞的跟帖、網站的下載記錄、社交平臺的互動記錄等等都為社會行為的研究提供了大量的數據。我想到最近比較火爆的穿戴設備,如果 該技術得到普及過后,擁有穿戴設備的人群的生活軌跡、生理各項指標都能輕而易舉地得到,相信這些大量的原始數據如能安全有效利用定能為衛生政策的制定提供 科學依據。
第二,萬事萬物, 凡存在,皆聯網,凡聯網,皆計算。20xx年起,美國食品與藥品管理局開始在藥品上推行配備rfid做法即每個食品包裝上安裝一個薄如紙張或小如豆粒的無 線傳感器。通過這個移動傳感器,對食品進行連續跟蹤,一旦相應的安全事故爆發,就能通過數據庫追蹤溯源,快速確定傳染源與影響范圍。這一技術相對于國內尚 在起步階段的食品追溯具有極強的借鑒性。上面提到的穿戴設備其實就可以視為一個穿戴在人身上的rfid。
20xx年的時 候,美國國家氣象局在全國2000兩客運大巴上裝備了傳感器,隨著大巴的移動,沿途手機所有地點的溫度、濕度、露水、光照度等數據,并立即傳給國家氣象局 數據中心。數據的采集是每10秒中一次,每天采集10萬次以上的數據,這些實時的、高精度的數據意味著天氣預報將不再僅僅是”預“,將逐漸走向“實”報、 “精”報。
作者涂子沛在書里 引用胡適與黃仁宇的話。胡適說中國人習慣于當“差不多先生”,凡是馬馬虎虎、不求精確。黃仁宇認為,中國不懂得用數字來管理國家。作者引用這兩位先生的名 言,當然是要彰顯傳統中國和今天美國之間的差異。但是我們也必須認識到:這兩位先生身經當時中國的混亂,激憤而出此言。在大數據浪潮迅猛而來的時候,中國 與100年前已經完全不一樣了,我們已經有足夠的能力與自信來面對各項挑戰。20xx年中國開始著手制定醫療系統的最小數據集,3年之后衛生部出臺了第一 版中國醫院最小數據集的標準。也是在20xx年,中國創立了第一個全國性的大型社會調查項目,開始對社會的發展和變遷進行全方位、綜合性、縱貫性的問卷訪 談調查,即“楊文昊在kod里面穿的褲子”??梢钥吹?,中國政府和企業已經投入到了大數據時代的浪潮之中了。我個人也有幾點應對的想法。
一是鼓勵、扶持基 于數據的創新創業。書中提到,政策扶持的傳統方法,可能是以政府主導建立大數據產業園,對新興企業提供辦公場所等便利條件或者現金支持,這固然有效,但更 為有效的是調動全社會的力量。調動全社會的力量來支持可以包括扶植民間團體,快速推進新技術、新理念在全社會的傳播?,F在云技術大眾基本上都耳熟能詳了, 而這主要是各大互聯網服務上都相繼推出了相應的云服務以及各大媒體對這項技術的關注,促進了大眾對新技術的了解與支持。
二是政府機構要建 立專門機構來統籌管理數據工作。在大數據時代不同的數據需要整合,公安、消防、民政、社保等等數據都需要進行聯動,將沉睡在數據庫內的數據喚醒,為政府制 定政策所用,避免各自為政、多頭管理的情況發生。數據的聯通也能在一定程度上減少群眾的“辦證”問題,相信在大數據時代,大家可能只需要一張身份卡就能滿 足絕大部分的數據需要。
三是圍繞個人數據安全,加強管理。任何技術都是雙刃劍,耍得好可以披荊斬棘,耍得不好則會害人傷己,大數據也不列外。如何保障個人隱私也成為了大數據時代面臨的一個重大挑戰。
《大數據時代》這本書主要描述的是大數據時代到臨人們生活、工作與思維各方面所遇到的重大變革。
文中清晰的闡述了大數據的基本概念和特點,并列出明確的觀點。不管對于產業實踐者,還是對于政府和公眾機構,都非常具有價值。作者將本書分為3個部分。第一部分提出了大數據時代處理數據理念上的三大轉變:抽樣等于全體;要效率不要絕對精確;要相關不要因果;第二部分作者從萬事萬物數據化和數據交叉復用的巨大價值兩個方面,講述驅動大數據戰車在材質和智力方面向前滾動的最根本動力;最后一部分,作者描繪了大數據帝國前夜的脆弱和不安,包括產業生態環境、數據安全隱私、信息公正公開等問題。
本書觀點擲地有聲,作者觀念高屋建瓴,從很多實例和經驗中萃取普適性觀念。例子詳實豐富,囊括了進百個學術和商業實例。
引言提出了大數據將給生活、工作于思維帶來重大的變革。一個例子是20xx年h1n1流行病毒背景下谷歌通過檢測檢索詞條,處理了4.5億個不同的數據模型,通過預測并與20xx年、20xx年美國疾控中心記錄的實際流感病例進行對比后,確定了45條檢索詞條組合,并將其用于一個特定的數學模型后,預測的結果與官方數據的相關系數高達97%。按照傳統的信息返回流程,通告新流感病毒病例將有一到兩周的延遲。對于飛速傳播的疾病,信息滯后兩周是致命的。而谷歌運用大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為世界預測流感提供了一種更快捷的預測工具。此外,我聯想到原淘寶董事長馬云通過大量數據分析得出20xx年經濟疲弱,為其商家提前做好迎接經濟危機提供了時間緩沖。(補充并清晰描述詳細)關于大數據在商業領域的應用,farecast公司是一個成功的典型范例。該公司由奧倫·埃齊奧尼創辦,利用機票的銷售數據來預測未來的機票價格,旨在幫助用戶在購買機票方面做出預測,并對機票價格走勢預測的可信度標示出來供消費者查考。farecast系統利用近十萬億條價格記錄預測的準確度達75%,使得使用farecast票價預測工具購買機票的旅客,平均每張機票節約50美元。而處理如此多的數據離開了大數據技術將無法進行。
也正是由于我們進入了一個前所未有的信息化時代,人們擁有了如此多的數據,才提供給我們利用大數據的分析處理手段,創造新的價值。也許有人以為我們大數據時代的還未來臨。其實大數據技術早已滲透到我們中間,它被應用在垃圾郵件的過濾,新浪微博技術平臺,谷歌翻譯以及輸入文字的自動糾錯等。
文中提出的一個觀點是,預測是大數據的核心。其實從過去的時代人們就利用掌握的數據進行各種分析,從而對經濟等各方面進行預測、矯正。只是進入了大數據時代人們掌握的數據爆炸性的速度在增長,從而數據的存儲和分析數據分方法成了釋放大數據能量的關鍵。
關于不是隨機樣本而是整體數據中。作者指出了隨機取樣是小數據時代用最少的數據獲取最大價值的做法。作者用大數據與喬布斯的癌癥治療例子說明了使用全部數據而非樣本的意義。喬布斯成為世界上第一個對自身所有dna和腫瘤dna進行排序的人。喬布斯曾開玩笑說“我要么是第一個通過這種方式戰勝癌癥的人,要么就是最后一個因為這種方式死于癌癥的人”。雖然最后難免死于癌癥但這種獲得所有數據而不是僅樣本的方法將他的生命延長了幾年。同樣,從事跨境匯款業務的xoom公司偵破一起犯罪集團的詐騙也是由于使用了整體數據。初此之外,他還列舉了日本“相撲”等來證明使用全體數據的重要性。
作者同時也指出隨著數據使用的越來越多,其得出的結果并一定能越來越精確,畢竟數據不能保證百分之百的正確,特別是大數據時代各種結構化與非結構化類型的數據聚集在一起難免導致結果的不太精確。大數據時代要求我們重新審視精確性的優劣。作者特別舉了谷歌翻譯成功的例子。谷歌翻譯之所以優于ibm的candide系統并不是因為它擁有更好的算法機制。和微軟的班科和布里爾一樣,谷歌翻譯增加了各種各樣的數據,并且接受了有錯誤的數據。(其語庫來自于未經過濾的網頁內容,會包含一些不完整的句子、拼寫錯誤、語法錯誤以及其他各種錯誤)。
在不是因果關系,而是相關關系的篇章中。作者指出在大數據時代往往知道是什么要比知道為什么來的更實在。作者列舉了林登的亞馬遜推薦系統的成功,證實了大數據在分析相關性方面的優勢以及在銷售中獲得的成功。沃爾瑪也是充分利用并挖掘各類數據信息的先鋒和代表,從以前廣為人事的啤酒和尿布的案例,以及作者舉的有關蛋撻和颶風天氣的案例,都說明了掌握了相關關系對于其策略的幫助。建立在相關關系分析法基礎上的預測是大數據的核心。aviva保險公司利用幾百種生活方式的數據,如愛好、長瀏覽網頁等間接的預測出哪些人更可能患高血壓、糖尿病和抑郁癥。ups國家快遞公司通過使用預測性分析檢測其全美6萬輛車隊。進行防御性的修理,節約巨大得的成本。這些都充分顯示了大數據在預測方面的優勢。
本書第二部分講的是大數據時代的商業變革。
作者用莫里繪制導航圖的例子告訴我們,遠在信息數字化之前,對數據的運用就已經開始了。莫里利用大量的人力去分析多年保存的航海記錄,他從這些大量的數據中獲取到新的利用價值。繪制的圖表幫助商人節約一大筆錢,使年輕的海員們間接獲取了成千上萬名經驗豐富的航海家的指導。日本先進工業技術研究所越水重臣教授通過安裝壓力傳感器將人屁股特征數據化,進而形成對乘客身份的特征識別。這項技術為汽車防盜系統提供了方案。公司,致力于為顧客預測商品的價格,通過收集處理海量的價格信息,預測準確率高達77%,幫助顧客在購買一個產品時節約了大約100美元。r部門通過分析來自210個國家的15億信用卡用戶的650億條交易記錄,分析得出商業發展和客戶消費趨勢,如通過分析發現如果一個人下午四點左右給汽車加油的話,他很可能在接下來的一個小時內去購物或者去餐館吃飯,且在這一小時里大約花費35到40美元。商家正可以利用這個分析結果,在加油的小票背面附加上附近商店的優惠券。
這些例子都證明了大數據蘊藏著巨大的商業價值。根據提供價值的不同來源,大數據價值鏈包括三大構成部分。包括第一種是基于數據本身的公司。這些公司擁有大量數據或者至少可以收集到大量數據,卻不一定有從數據中提取價值或者用數據催生創新思想的技能。第二種是基于技能的公司。它們通常是咨詢公司、技術供應商或者分析公司。它們掌握了專業技能但并不一定擁有數據或者提出數據創性用途的才能。比如說,沃爾瑪和pop-tarts這兩個零售商就是借助天睿公司的分析來獲得營銷點子,天睿就是一家大數據分析公司。第三種是基于思維的公司。皮特.華登,jetpac的聯合創始人,就是通過想法獲得價值的一個例子,他通過用戶分享到網上的旅行照片來為人們推薦下一次旅行目的地。對于某些公司來說,數據和技能并不是成功的關鍵。挖掘數據的新價值的創新思維才是這些公司脫穎而出的優勢所在。
大數據成為許多公司競爭力的來源,未來可能整個行業的結構會發生改變,大公司和小公司最有可能成為贏家。如今的核心競爭力在于快速而廉價地進行大量的數據存儲和處理。當然公司要根據自己的情況進行調整。大數據向小數據時代的贏家以及那些線下大公司(如沃爾瑪、聯邦快遞、寶潔公司、雀巢公司、波音公司)提出了挑戰。同時,大數據也為小公司帶來了機遇。大數據也將會影響國家競爭力。當制造業已經大幅轉向發展中國家,而大家都爭相發展創新行業的時候,工業化國家因為掌握了數據以及大數據技術,所以仍然在全球競爭中占據優勢,但這個優勢很難持續。隨著技術的發展,西方世界在大數據技術的優勢將會慢慢消失。對于大公司而言,好消息是大數據技術可以加劇優勝劣汰。一旦公司掌握了大數據,它不但可能超過對手還可能遙遙領先。
文章第三部分講了大數據帶來無數好處的同時帶來的不良影響以及如何面對這些影響。包括如數據的收益的處理問題以及數據中用戶資料的隱私和決策過程帶來的影響。作者在保護個人隱私方面提出了幾種想法。一種是使用數據時征詢數據所有個人的知曉和授權。第二個技術途徑就是匿名化。作者同時也指出了這兩種方式的難度。一方面收集到的數據可能會被后續的多次利用。另一方面,匿名化會在數據收集越來越多和數據的相互結合關聯使用時變得無效。作者列列舉電影《少數派報告》的情節說明越來越依賴數據時,大數據可能將我們禁錮在可能性之中。當然通過分析犯罪的常發地與常發時間,合理安排警力會對治安防范提供不小的幫助。作者還指出不能盡信數據的分析結果,因為不能保證獲取分析結果來源的數據準確性。大數據在給我們生活提供便利的同時,也讓隱私保護的法律手段失去了作用。我們必須杜絕對數據的過分依賴。
在高速邁進大數據時代的同時,人類信息管理準則需要重新定位,這將帶動社會核心價值觀的轉變。大數據時代,對原有規范的修修補補已經不足以抑制大數據帶來的風險。保護個人隱私就需要對個人數據處理器對其政策和行為承擔更多責任。同時必須重新定義公正的概念,以確保人類行為的自由。作者提出了解決這些問題的方向。如個人隱私保護方面,可以讓使用者承擔更多的社會責任。將責任從民眾轉移到數據使用者有很多意義,也有充分的理由。因為他們更清楚將如何使用數據且是數據應用最大的受益者。關于公正方面簡單的講就是個人可以并應為他們的行為而非傾向負責。就像公司有內部會計和外部審計人員一樣,大數據時代,公司將設置專門的人員--內部和外部算法師對大數據活動進行監督。還有可能出現第三方的機構對大數據行為進行監督和衡量。作者甚至考慮到對大數據存在的壟斷情況進行分析并在反壟斷反面給了建議。最后結語中作者提出大數據提供給人們的只是參考答案,提醒我們在利用這個工具時要銘記人類的作用是無法完全替代的。
大數據時代是信息化社會發展必然趨勢,我們只有緊緊跟隨時代發展的潮流,在技術上、制度上、價值觀念上做出迅速調整并牢牢跟進,才能在接下來新一輪的國際競爭中擺脫受制于人的弱勢境地,才能把握發展的方向,沖破與西方國家的差距。對于一個國家如此,對于一個企業亦是如此。在如此快速的到來的大數據時代,我們還有很多知識需要學習,許多思維需要轉變,許多技術需要研究。公司的規劃中,也需充分考慮到大數據對于公司的未來發展所帶來的機遇和挑戰。對于掌握大量數據的公司,需要考慮有多少數字化的數據,又有哪些可以通過大數據的分析處理而帶來有價值的用途?比如國內目前的社交網站,購物網站等都掌握了用戶的大量的數據信息。在大數據時代制勝的良藥也許是創新的點子,也許可以利用外部的數據,通過多維化、多層面的分析給其他企業或個人帶來價值。
“大數據”概念早在1980年就有國外的學者提出,可是最近幾年才廣泛受到大家的關注。當“大數據”這個概念傳到中國的時候,瞬間引起了轟動。隨即,各種有關“大數據”的資料和書籍充斥的我們的視野。隨意打開某個電子商務平臺圖書類頁面,在搜索框中搜索“大數據”三個字,就會出現好多本有關“大數據”的書籍??墒?,有一個很有趣的現象就是:幾乎所有的平臺上,出現的第一本關于“大數據”的書籍一定是《大數據時代》。一點進去,這本書推薦欄里的第一句話就是:迄今為止全世界最好的一本大數據專著。同時,為這本書做推薦的都是各行業的精英領袖。所有“大數據”方面的書籍也是這本書銷量最高,評價最好。
我從來不會因為哪本書暢銷和很多人推薦就盲目跟風的去看一本書。因為我知道通常在這種情況下選擇一本書,整個閱讀的體會和感受是無法遵從自己的內心的,整個過程都很容易夾雜著別人對這本書的感受。所以通常我讀書的節奏大多都是跟不上“潮流”的,但往往經過風雨洗禮之后沉淀下來的都是精華。坦白講,閱讀這本書的初衷并不是因為我想從書中獲取到多少大數據方面的精華,只是很想知道對于這么一個很直白的名詞,作者是怎么寫出這么厚的一本書的。這種初衷或許很無知和幼稚,可就是這種“愚蠢”的好奇心,讓我更透徹的看到書中的精華。
在看《大數據時代》這本書之前,我的所有讀后感都是集中在書籍給了我什么思考。對于這本書的讀后感,除了觀點碰撞之外,我還會加上大部分個人看這本書的體會。因為這本書,已經完全讓我模糊了大多數人口中的“全世界最好的書”是一種什么標準。也許《大數據時代》真的無法承載那么高的贊美!
看完這本書,我隨意調查了一些閱讀過這本書并且給這本書絕對好評的朋友。詢問他們這本書好在哪里?大多數的回答是說《大數據時代》這本書讓對大數據一無所知的他們了解了大數據這個概念,同時通過很多案例說明原來大數據能有這么大的用處,影響會有這么大!僅此而已。我看完這本書最大的感受是這本書分為上、下兩部分。前120多頁為上部分,后120多頁為下部分。之所以說《大數據時代》是一本關于大數據的入門書,是因為這本書用了前面120多頁的篇幅反復的強調大數據的出現對社會發展影響很大,并且要人們轉變小數據時代慣有的思想。所以整本書的前半部分就強調大數據時代的三個轉變:1、大數據利用所有的數據,而不再僅僅依靠一小部分數據,不再依賴于隨機采樣。2、大數據數據多,不再熱衷于追求精確性,也不再期待精確性。3、大數據時代不再熱衷于尋找因果關系,而是追求相關關系。所以整個上半部分沒什么可詳說的。我們重點聊聊本書的后半部分。
既然一直都在強調大數據對我們的意義,總要有具體體現。整本書中,我感觸最大的一個案例就是某公司通過分析大數據發現:新品發布的時候,舊一代的產品可能會出現短暫的價格上漲。因為人們在心理上就認為新產品的推出,舊產品就會便宜,從而就會提高購買量。這個發現和我們平常的心理是完全違背的,而且如果不用數據來證明,直接講道理給大家可能還是無法相信。這就是大數據對我們很多傳統思維的顛覆。一旦涉及到思維的改變,往往就會引起整個社會的大變動。
大數據這個概念的出現,讓大數據逐漸發展形成一條價值鏈。在這條價值鏈上,數據本身、技能和思維是最重要的環節。隨著互聯網技術的發展,越來越多的公司都能收集到大量的數據,這些數據也會越來越公開??墒窃谶@些公司中,不是所有的公司都有從數據中提取價值或者用數據催生創新思想的技能。于是就會出現以下兩種公司,一種是掌握了專業技能但不一定擁有數據或者提出數據創新性用途才能的公司,另一種就是擁有超前思維,懂得怎樣挖掘數據的新價值的創新公司。短時間內,我們可能會感覺擁有創新思維,懂得挖掘出數據新價值的大數據思維是最重要的??墒堑鹊疆a業成熟之后,所有人都知曉了大數據的意義,所有人便開始挖掘自己的大數據思維。同時,隨著科技的進步,掌握大數據技術的也將成為常態。所以到后來,整個價值鏈的核心環節還是回到了數據本身。而到那時候,大數據的公開性也就越來越小。
在大談完大數據對人類發展的積極意義之后,作者也考慮到大數據時代的風險。這一部分是作者腦洞大開的精彩之處,同時也是最荒謬的一部分。書中說大數據時代將要懲罰未來犯罪,這樣可以在嫌疑人在可能犯罪之前就把犯罪行為給防止。這樣的社會,大數據儼然已經延伸到了我們每個人生活的點滴。幾乎我們在生活中所做的一切都在大數據的“監控”之下,我想到那時候,別說我們每個人的隱私已經沒有的了,嚴重一點可以說是我們可能連人都不算了。在我們人的社會屬性中,自由權利是一項很重要的指標。通過大數據懲罰人的未來犯罪已經否定了人的自由選擇能力和人的行為責任自負。同時,由于數據是永久保存,大數據預測也是通過每個人之前的數據來判斷,所以大數據同樣也否定了人的求善心理。還有,從現在各種大數據預測的結果來看,很多發言人都說大數據不是百分百的準確。所以利用大數據來判斷人的行為發展已經違背了大數據不追求精確性的特征,這也是書中自相矛盾的地方。
對于一個新事物,如果能讓大家了解這個事物并且對此產生興趣,這已經算是一本不錯的入門書了。
從小到大,雞湯對于我們來說一直都挺珍貴的。身體虛弱了,喝點雞湯能夠補充營養。心靈受傷了,看點心靈雞湯可以鼓舞人心??墒墙鼛啄?,人們生活水平提高了,營養富余,雞湯已經不是人們補營養的期待了。同樣,心靈雞湯也是如此。
心靈雞湯其實是一個很虛偽的東西。很多人都被心靈雞湯誘人的外表給迷惑。在我看來,心靈雞湯很大的一個特征就是:立人的志,但是就不告訴你實現志的方法。很多人每次在失意的時候就喜歡看心靈雞湯,希望能得到慰藉??赐旰笠灿X得醍醐灌頂,感覺整個世界都亮了。但又有幾個人想過喝完這些雞湯之后你除了看似重拾夢想,你還獲得了什么?你知道怎么去做嗎?《大數據時代》就是這樣一本書。整本書從頭到尾都在向讀者講述大數據的意義,當然期間也會用相應的案例來證明大數據確實有這樣的能力。但是,整本書從沒有涉及到技術層面的問題?;蛟S對于大數據這種依靠互聯網技術的新事物,即使向讀者講技術,也沒有幾個人看得懂,可是整本書沒有一點關于大數據思維的技能引導。給出的案例中只有少數案例向讀者講述了這個公司為什么要利用大數據來解決這種問題,大多數都只是告訴讀者國外某家公司運用大數據得出了某種結論。同時,在本書中文譯作者寫的序里,強調自己翻譯這本著作的一大優點是可以結合國內的案例來分析書中的理論,結果,看到最后一頁都沒有看到一個國內企業關于大數據運用的案例。
之所以我稱之為“心靈雞湯”,還有一個原因就是作者在書中大講特講的大數據的作用,事實上按照現在的經濟發展水平和社會文明發展程度是很難實現的。書中很多時候的理論都是要建立在社會各項文明都發展健全的基礎上才能實現。
看到這個標題,大家可能會覺得我夸大其詞,受到如此多人好評的書怎么是“傳銷手冊”呢?對于這個表達,我只想說兩點:1、此說法僅代表我個人觀點,是否認同是個人問題。2、此說法主要針對本書的上部分。
我們都知道傳銷組織在發展下線的前期是要花大力氣去培訓的,也就是洗腦。而對于一個陌生又很難以理解的事物,最好的“洗腦”方式就是重復?!洞髷祿r代》這本書就是運用這種方式,前半部分為了讓讀者能夠接受“大數據”這個概念,作者反反復復提醒讀者大數據不是隨機采樣、不追求精確和不尋找因果關系。同時用很多看似很通俗易懂其實看完后還是不知道說了什么的案例來讓人信服大數據的作用。書中的后半部分雖然也是用這種方式來感染讀者,可后半部分中作者的暢想和對大數據的威脅分析還是對讀者有一些實質意義的,所以后半部分的“傳銷”影響就不是很重要。
大數據時代是未來的趨勢,這誰都不會否認。大數據改造了我們的生活,改變著我們的世界。不管它是以一種什么樣的姿態面向世界,它都沒有錯,因為大數據只是一種工具。但當人類開始質疑甚至恐懼大數據的時候,人類就該思考自己是否利用好這個好工具了。
短短幾天把涂子沛先生的《大數據》這本書瀏覽一遍,結合去年北大繼續教育學院進行現代管理學科學習時,老師介紹這本書時的精髓、內涵時的情景,寫這篇。
心得體會。
現將淺薄體會與老師同學們一起交流,部分內容參考了書內容和涂子沛先生的觀點,希望老師同學給予批評指正。
“一個真正的信息社會,首先是一個公民社會”,這是全書的一個出發點,這個出發點就是說,“信息社會最大的特點就是,信息的自由流動?!蓖孔优嬖跁械挠^點是:如果沒有人的平等,沒有人的自由,信息能夠自由流動嗎?如果沒有人的平等,我們這個社會彼此另外壓抑另外一個人,我們的創造力怎么迸發出來?我們每個人都面臨大數據時代思維變革的挑戰。
涂先生在書中說出“大數據時代的公民生活”,題目他在書中來演繹公民生活的時候,它的背景是“大數據”時代。首先他講了“什么是大數據時代”,在研究一個現象的時候,首先要研究它的定義,研究它的內涵,咱們就先把數據給它抽走,看看代表是什么。數據不是數字,數據是有跟列的數字,當他在書中談到數據的時候,我們想到的是它代表計算,代表精確,代表理性,代表科學,代表事實。大家說姚明很高,到底有多高,你最后說兩米多左右,這就是一個精確的事實。數據的出現也是人類認識這個世界,不斷地向前推進的需要,人類發現需要精確的數字,就好像回到剛才的例子,你說很高很高,到底有多高,我們看,人類歷史上很多重大的文明推進和演進都跟數據離不開,比如說度量衡的發明,貨幣的發明,再比如二進制的發明最后導致計算機的發明,最背后就是數據。
他在書中有一個新的詞叫database--數據庫。這個詞完全是一個外來的詞,1。
計算機最早是計算數字和處理數字,那時候就存在database,后來隨著計算機能力的不斷增強,它可以處理文字、圖片、視頻、聲音等等,但所有這些都放在database,所以他在書中把這所有的一切都稱為數據,這時候數據的內涵擴大了。其實大家要知道數據的內涵在擴大,還有一些其他的事情也在發生變化,就是說數據的容量在增大。八十年代的時候就有人提出bigdata這個概念,那時候的“大數據”的還不是現在“大數據”的概念?!按髷祿边@個概念不斷的演變,最早有人就預見到說有一天數據會比程序更加重要,比軟件更加重要,它是指重要性。所以我們往大了說,可以說這是一個大的機器,一個大的房子,也可以說是一個大容物。書中說的:到2000年的時候,賓夕法尼亞大學有一個教授出來定義,那時候企業的數據已經到泰了,他說200泰的數據就是大數據了,那泰到底是什么樣的單位呢?比如全世界最大的圖書館是美國國會圖書館,美國國會圖書印刷品的含量,不包括電子圖書加起來是15泰,北師大應該是2個泰或者更少,這個數據就叫“泰”。
2代公民的生活。data在五年的時候,應該有一個創始人,他發現一個東西:同一個計算機芯片,同一個面積上晶體管的數量每一到兩年就要增加一倍,這意味著什么?意味著計算機處理的能力越來越強,存儲的能力也越來越強,同一個面積上東西越來越多,越來越密,一到兩年就增加一倍,物力存在器的性能不斷上升,價值不斷的下降。有一個考證說,從五十年代起最早的存儲器發明到現在,存儲器的價格下降了300萬倍,大家可以想想,歷史上還有什么商品它的價格能在半個世紀下降300萬倍?而摩爾定律也成為了一個代名詞,呈指數形發展的變化,急劇變化的狀態,劇變的變化。我們可以看看,這個圖代表摩爾定律,是條直線,為什么是直線呢?因為沒辦法畫,如果嚴格按刻度來畫的話應該是一條橫軸的曲線。涂先生在書中分析了:“1988年一個科學家提出了普適計算,普適計算提的不多,大家都提物聯網。物聯網是普適計算一個子概念,人家計算機的浪潮是分階段的:第一個階段是主機階段,到80年代由于微軟、蘋果一直到個人電腦的階段,88年互聯網之后,科學家說這不是結果”。
“一個主動你就能改變的時代,因為資源就在那里,你不能去等其他的人”這是涂先生的觀點。他說說影響公民的第一點:公民最主要的精神是什么?是積極地介入,積極地改變。影響我們公民的第二點,書里面有很多關于“大數據”時代的隱私文化,有的專家說87%都不能定位,只要通過“大數據”挖掘就會定位,這是影響我們公民生活的一個巨大的挑戰,就是隱私權的挑戰,而隱私權是一個非常重要的問題,是對個人自由的憑照。他為什么用這么大的篇幅來寫隱私權利呢?也是因為我覺得,我們中國社會特別需要隱私權利,不僅是政府在侵犯公民的隱私權利,我們公民彼此之間也在不停地侵犯隱私權,而且大家習以為常。但是隱私權是一個文明社會的標志,越文明的社會,越注重隱私權,個人才越有自由,隱私權是把自己跟公共生活劃分開的一條界線,保障個人的自由。社交媒體讓我們進入一個前所未有人文相連的時代,這影不影響我們的公民生活?這是最大的隱患,為什么?它把我們人跟人連接起來,我們知道人跟人一旦連接起來,1+1大于2的作用。
總之,使我感受到當前我們正生活在,每天都不同、都高速度發展、激烈競。
4爭和大數據時代。我們每個人都必須面對大數據時代、結合實際面對挑戰,要相信“想不到事情會發生,想不到的速度會發生”。要及時更新知識、廣納信息、梳理思維及時做出正確判斷、做好工作學習生活中的精準決策。
(趙元)。
最近閑暇之余我讀了徐子沛先生的《大數據》一書,真是讓我受益匪淺?!洞髷祿酚纸凶觥洞髷祿赫诘絹淼臄祿锩?。全書通過講述美國在過去的半個世紀里所發生的關于信息、技術方面的典型案例,來為讀者剖析出一個淺顯易懂的“大數據”。
《大數據》一書,之所以珍貴、便于閱讀,在于徐子沛先生在寫作過程之中,將原本高、精、尖的數據專業的專業術語,轉而用淺顯易懂的話語來表現,使得本書成為了一本平易近人的科普讀物。使得閱讀此書的讀者無論年齡、專業、學識,都能最大限度的接觸到書中所闡釋的基本知識。而我作為一個農行從業四年的員工,當然也有屬于我自己的一些感想:
《大數據》一書之中,所提出的一個關鍵性的問題就是為什么在近幾年出現了“大數據”這一詞語?作者舉出了美國在2009年的相關數據,我從中發現了對該問題給出的一些答案。書中舉例,麥肯錫《大數據:下一代創新,競爭和生產率的前沿》報告中進行估算,政府848pb,傳媒行業715pb,離散制造業966pb。正是針對相關數據指標的增長,以及當前以全球化為背景的數據信息開放化,各類信息的自由化等原因,導致了面對數據的分析,以及數據的處理,數據的預測和數據的決策都有了更高的要求。這些要求導致我們在針對經濟全球化,交流多元擴大化,各個專業管理與發展的精細化必須有一個相對宏觀的經濟分析頭腦。書中使我感觸最深的是,針對美國目前發展中的大事件以及現象,例如,美國礦難的悲情歷史,街頭警察的創新創奇,美國最熱的交友信息平臺facebook與推特,以及美國糾結百年的統一身份證的問題等,都一一分析了其背后所蘊含的經濟學、金融學道理,以及這些時間的背后數據對于美國政府,公民以及社會的種種挑戰。書中針對美國半個世紀的發展歷程,逐一的分析其內涵,并將美國的發展與進步的基本原因歸結為開放和創新。正是因為在這個時代美國強調對于互聯網的最大利用化,才有了即使面對壓力和強大的經濟困難還在穩步前進的現代美國。
這本書給了我最大的啟迪,說實話不是那些經濟學案例,也不是那些幾年前的數據信息。而是一種如何發展的理念。美國正是有了開放和創新才有了如今不斷發展中的世界第一強國。而我們中國對于開放和創新卻還沒有做出最好的詮釋。雖然我國的改革開放,技術創新已經取得了一定的成績,但是面對發達國家我相信其中的差距也是不言而喻的。大到一個國家,小到一個集體,都離不開開放和創新。讀了徐子沛先生的《大數據》,我思考最深的不是國家的改革與創新,而是我身處的農行的發展與創新。
作為一個在農行工作了四年的員工,我熱愛的著我的崗位,也熱愛著我為之努力奮斗的中國農業銀行。面對農行未來的創新與發展,在對了這本書以后我針對自身的崗位得出了一些不盡成熟的想法:一方面,我們農行有自己的理財產品,而我行主要的營銷方法還是有些被動,我的一點想法是可以多做集中性質的營銷,例如在浦口區農行網點附近繁華地段發放宣傳單,或者針對有需要的企業可以進行集體宣傳,使我行的優質產品深入人心,從而也可以提升我行的基本效益。例如去年舉行了幾場“新老客戶答謝會”,如果舉辦的次數再多一點,我覺得效果會更好。
另一方面,對于我行的創新產品我也有一些想法。創新是任何個人,企業,乃至國家的發展原動力。那么,我行也應該響應時代的召喚。近日,正值旅游的黃金時期,很多人選擇出境旅游,但是有很多國家不支持銀聯卡,所以很多人想辦理visa或mc的信用卡,但是信用卡辦起來需要至少半個月的時間,且要求比較高。所以現在有的銀行正在發行visa或mc的借記卡,且申領條件比較簡單、速度快。我行可以參照并大力開發這一領域。
以上兩點只是我個人的一點想法,雖然還有些稚嫩,有些不成熟,但是這兩點是我看了徐子沛先生的《大數據》一書以后,基于我對農行的熱愛,有感而發,由心而生的。
2013年09月。
《大數據》是中國大數據領域第一本著作,引領了中國社會對大數據戰略、數據治國和開放數據的討論,該書先后獲得國家圖書館文津圖書獎、第四屆中國軟科學前沿探索獎、20xx年度十大好書等獎項。下面是有涂子沛大數據的。
讀后感。
歡迎參閱。
7月的一天,我有幸拿到了涂子沛的《大數據》一書,幾個月來認真翻閱了好幾遍,并查閱了許多相關的文章,也讓我產生了寫下這篇讀后感的沖動。
當今的時代是一個信息的時代,是一個數據爆炸的時代。信息是數據的內容,數據是信息的載體。隨著電腦、網絡的普及,搜索引擎技術的進步以及云時代的來臨,上至國家下至個人,無不為數據所包圍,信息無處不在、數據無處不在。難以想象離開數據、離開數據管理,我們這個社會將會是什么樣子。
那么大數據時代到底有多大呢?我們知道計算機用二進制存儲和處理數據,一位是指一個二進制數位——0或1,這是存儲信息的邏輯單元。一個字節有8位,再往上是kb(1kb是210字節)、mb(1mb是220字節)、gb(1gb是230字節)、tb(1tb是240字節)、pb(1pb是250字節)、eb(1eb是260字節)、zb(1zb是270字節)、yb(1yb是280字節)。但這究竟是多大的數據呢,我們還是難以想象。有人統計過將1tb的數據全部打印出來,需要用5000萬個四開門的書柜去儲藏。這是多么龐大的一個數啊,而這只是1tb——240個字節。而僅全世界消費者一年產生的數據就有6000pb,全世界企業一年產生的數據有7000pb。截至20xx年,人類產生的數據為1。2zb,且數據每年以指數級增長,每兩年我們擁有的數據將翻一番。
在大數據時代,數字電視、手機、移動互聯網統治了我們。截至20xx年,中國手機網民數突破4。2億;20xx年中國超過美國成為最大的智能手機市場;20xx年2月微信用戶數突破4億,到9月,微信用戶達到5億,微信用戶正在以每6個月增長1億用戶的速度增長;95%的智能手機用戶睡前玩手機。
“棱鏡門”事件主角愛德華?斯諾登一時間成為全球關注的目標,網絡時代何處安放我們的隱私?美國間諜衛星精度達到了5至10厘米,當今社會我們每個人近乎“透明”!
大數據時代給我們帶來什么。
1965年,英特爾創始人之一戈登?摩爾考察了計算機硬件的發展規律,提出了著名的摩爾定律。該定律認為,同一個面積集成電路上可容納的晶體管數目,一到兩年將增加1倍,也就是說,其性能將提升1倍。換句話說,計算機硬件的處理速度和存儲能力,一到兩年將提升1倍。這一定律揭示了信息技術進步的速度。
數據的爆炸是“三維”的,是立體的,這三個維度,主要表現在:同一類型的數據量在快速增長;數據增長速度在加快;數據的多樣性,即新的數據來源和新的數據種類在不斷增長。
任何一件事物,都有一個從量變到質變的過程。在當前這個數據爆炸的時代,數據帶給我們什么呢?我想最重要的是帶來了思維模式的轉變。轉變了我們一直以來以因果邏輯思維的模式,變成了相互關系的邏輯思維。舉一個例子,在不久的將來我們完全可以通過數據分析,預判出一次地震的時間、地點、強度,但我們不是通過分析地殼運動而來的,而是通過相互關系的龐大的數據分析而來的。
20xx年的冰災,當時的廣州火車站滯留了25萬人,這個數據是通過當時在這個區域的手機使用數統計出來的,與后期的最終統計基本吻合。大數據使我們開始了一次全新的探索,而探索的意義不在于發現新大陸,而在于發現新視角。
大數據時代給企業帶來了什么。
數據挖掘是一種知識產生的過程,從中產生創新、產生管理、產生推動社會變革的理論與實踐。
沃爾瑪公司是美國的一家世界性連鎖企業,以營業額計算,為全球最大的公司。沃爾瑪一年產生的數據有2500tb。沃爾瑪公司通過對大量歷史數據的分析發現,年輕爸爸去超市購買嬰兒尿布會順便買點啤酒犒勞自己。因此,沃爾瑪推出了尿布與啤酒搭售的營銷策略,使銷售量增長。
紐約,美國最大的城市及第一大港,擁有810多萬人口,其36%為外國移民,人口使用約170種語言。1990年,紐約市共發生了兇殺案2245宗,1995年下降到1171宗,20xx年下降到466宗,創下50年最低。紐約是如何實現這個成績的呢?原來紐約通過把20xx年的犯罪數據和交通數據整合,開發出了“數據驅動的警務管理”,發現交通事故高發地帶,也是犯罪活動的高發地帶,而且兩者的高發時間段也同樣吻合。這就將警察以往“亡羊補牢”的工作模式轉變為“守株待兔”的工作模式,取得了巨大的成績。
大數據及其分析,將會在未來20xx年改變幾乎每一個行業的業務功能。任何一個組織,如果早一點著手大數據工作,都可以獲得明顯的競爭優勢。用另一本類似著作《大數據時代》的作者維克托的一句話:“大數據是未來,是新的油田、金礦?!?/p>
當前我們的企業每天獲得大量的生產、營銷、辦公數據,如何將數據分析應用其中是時代賦予我們的挑戰。如何實現粗放型向精細化轉變,大數據為我們的企業提升管理效率、提高服務水平提供了有利平臺。
世界每天都在變,唯一不變的是變化。大數據將是傳統行業的掘墓者,盛極一時的柯達倒閉了,微軟收購了諾基亞……我們的企業處在這樣一個變革的社會,應該何去何從,值得我們每一個人深思。
首先說下《大數據》這本書好的地方就是將大數據變化為一本科普讀物,不是講大數據的關鍵技術和具體實現,而更多的是圍繞美國政府基于數據的管理歷史線條展開,讓大家更加容易理解大數據在政府執政和公共事務管理中發揮的作用,所以我看完后最大的感覺就是關注智慧城市的相關人員完全有必要閱讀該書,會對以后在智慧城市的管理和建設中如何更好的理解大數據,應用大數據,發揮大數據本身的業務價值有更好的理解。
為何近幾年出現大數據,最重要的還是隨著信息技術和互聯網,管理的精細化,全球化和社交圈擴大,數據呈現了指數級的增長。20xx年美國的數據,離散制造業966pb,政府848pb,傳媒行業715pb,這是麥肯錫20xx年出版的一份報告《大數據:下一代創新,競爭和生產率的前沿》里面的一個估算。正是由于數據指數級的增長,對數據的開放,信息自由,數據的采集,數據的分析和處理,預測和決策提出了更高的要求。
信息自由,一為信息公開,二為信息發布。公開是政府和某一社會特定主體的關系,是點對點的;而信息發布是政府和社會的關系,是點對面的。信息自由法已經成為美國不可缺少的一個基本法案,只有信息自由才談得上進一步的數據開放和數據共享。
我們信奉上帝,除了上帝任何人都要以數據說話。信息技術發展,數據指數級增長,已經徹底改變了政府,社會,商業群體的決策方法。需要的是形成一種數據驅動的決策方法,數據治國,需要基于實證的事實而非簡單的意識形態。而真正要讓數據能夠上升到決策層面,首先需要的就是數據大范圍采集,數據抽樣,數據測量和數據質量管理。另外數據驅動和事件驅動是兩種模式,數據驅動強調的是歷史和預測,而事件驅動強調的是實時和響應。大數據有一個維度專門是指速度和快速響應,更需要考慮事件驅動和數據驅動融合。
帝國法則,詳細講述了數據的收集法則,使用法則,發布法則和管理法則。數據能夠滿足既定的用途,它才有質量。如果不能滿足既定的目標和用途,就談不上質量。換句話說,數據的質量不僅取決于它本身,還取決于它的用途。數據質量的問題涉及到數據收集,使用,發布等所有過程的問題。數據質量管理要有標準,有流程,有救助機制。
從軟件的開源到數據的開放,我們過渡到一個新的世界,可以講數據開放式本身的另外一個重點。在這個新的世界里面,數據遠遠比軟件更加重要。從20xx年以來,美國一直在進行數據開放運動,聯邦政府也專門家里了數據開放門戶網站datagov,其主要目標就是通過數據開放,通過鼓勵新的創意,讓數據走出政府,得到更多的創新型應用。從而進一步鞏固政府透明化,民主化和政府效能。
數據之爭涉及到原始數據采集,數據質量,數據安全,數據粒度,數據價值,數據虛實多個維度。而datagov不僅僅開放了原始數據,地理數據,還包含了數據分析工具的開放。數據開放為創新提供了無窮的燃料,因為創新型應用,數據的能量將逐層放大。
預測未來最好的方法,就是創造未來。而數據最大的價值仍然在預測上面,在解決了數據開放,數據采集,數據質量管理,數據處理后,最重要的作用就是基于數據進行科學的預測和決策。數據競爭將是企業贏之道,一些企業已經將他們商業活動的每個環節放在了數據收集,分析和行動的能力上。
進入20xx年大數據一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,并命名與之相關的技術發展與創新,人們對于海量數據的挖掘和運用,預示著新一波生產率增長和消費者消費浪潮的到來?!按髷祿钡倪\用在各個領域發揮著前所未有的重要作用,滲透到了當今每一個行業和業務職能領域,成為重要的生產因素,并對人類的數據駕馭能力提出了更新的挑戰。
一、傳統的信息格局被打破。
不是我不明白,這世界變化快。20xx年還是一張軟盤打天下的時代,短短十多年光景,硬盤的存儲容量已從4gb、16gb、32gb迅速攀升到1tb(相當于1024gb的容量)。原來僅有1.44mb的軟盤在當時感覺存儲容量還是蠻大的,到現在硬盤容量躥升至1tb了,反而感覺存儲空間捉襟見肘,到底是哪里出現了問題呢?1965年英特爾的創始人之一戈登摩爾考察了計算機硬件的發展規律,提出了著名的摩爾定律。該定律認為,同一個面積集成電路上可容納的晶體管數目,一到兩年將增加一倍,換句話說,計算機硬件的處理速度和存儲能力,一到兩年將提升一倍。這一定律,得到驗證。
大數據!一語驚醒夢中人,大數據時代已經悄然來臨。隨著社交網絡的逐漸成熟,移動寬帶迅速提升,云計算、互聯網應用更加豐富。更多的傳感設備、移動終端接入到網絡,由此產生的數據及增長速度迅速攀升。那么什么是大數據呢,正如ibm總結的那樣:“大量化(volume)、多樣化(variety)和快速化(velocity)”就是“大數據”的顯著特征。
二、管理法則:質量是數據時代的根本。
數據能滿足其既定的用途,它才有質量。如果不能滿足既定的目標和用途,就談不上質量。換句話說,數據的質量不僅取決于它本身,還取決于它的用途(引致數據庫專家杰克.奧爾森)。
隨著網絡的出現,政府開始在網上發布信息和數據,對政府而言,是一個很大的挑戰,因為數據一經政府發布,往往被視為權威,對社會的各個領域都可能產生重大的影響。任何一份通過網絡發布的信息,面對的都不是一定特定群體,而是全體國民,如果政府發布數據的質量不可靠,將受到頻繁的、大范圍的質疑,特別是一些可以會影響到公共政策和行業管制標準的數據,將引起巨大的爭議。
例如:單位奶制品中蛋白質含量、菌落總數應該是多少?飲用水里能混雜多少含量的微量元素?新鮮蔬菜能帶有多少指標的殺蟲劑殘留?工廠排放的廢氣、汽車的尾氣以及車間的通風條件都要符合怎樣的標準等等,這些標準,都是數據。隨著社會的發民、科學的進步,這些標準越來越多越來越細,每一個都和國民生活和經濟發展息息相關。所以政府在網上發布數據,必須慎之又慎,保證質量。
三、大數據在各領域中的價值表現。
1、數據競爭:企業贏利之道。
企業以“低成本、高效率”的方式來開展公司的業務,而要做到“低成本、高效率”的運營以及決策正確,企業必須廣泛推選以事實為基礎的決策方法、大量使用數據分析來優化企業的各個運營環節,通過基于數據的優化和對接,把業務流程和決策過程當中存在的每一分潛在的價值都“擠”出來,從而節約成本,戰勝對手,在市場上幸存。這種競爭,就是一種基于數據的競爭。
已經有越來越多令人信服的證據表明:只要實施正確的政策和激勵,大數據將成為競爭的關鍵性基礎,并成為下一波生產率提高、創新和為消費者創造價值的支柱。信息時代的競爭,不是勞動生產率的競爭,而是知識生產率的競爭。數據,是信息的載體、是知識的源泉,當然也就可以創造價值和利潤,可以預見,基于知識的競爭,將集中表現為基于數據的競爭,這種數據競爭,將成為經濟發展的必然。
2、通訊、電信、商務智能、互聯網的逐步演變。
近年來,隨著大數據的迅猛增加,各個行業、政府部門都在嘗試“用數據來決策”、“用數據來管理”、“用數據來創新”,在這個過程中,涌現了一大批既務實管用,又令人耳目一新的做法和應用。
回顧歷史,我們從廣播的年代到電視的年代再到本世紀初互聯網的年代,從音頻對話到可視電話,數據技術一直在我們的生活中扮演重要的角色,互聯網出現之后,就交流和互動而言,廣播和電視無疑相形見絀。
“大數據”可能帶來的巨大價值正漸漸被人們認可,它通過技術的創新與發展,以及數據的全面感知、收集、分析、共享,為人們提供了一種全新的看待世界的方法。
四、總結。
涂先生從數據本身的革命、社會科學的革命、企業管理的革命、社會管理的革命四個方面深刻闡述了大數據的重要意義,以最前沿的視野、直接的解讀和剖析為我們理清了《大數據》一書的脈絡和精髓,為我們如何能更好地閱讀、理解、領會《大數據》一書的精神實質提供了很好的幫助,讓我們意識到:大數據的時代,是不可逃避的。
。
毫無疑問,我們正處在一個真正意義上的大數據時代。徐子沛先生的《大數據》這本書給了我們一個很好的啟發,面對信息技術的迅猛發展,存儲能力的日漸膨脹,網絡傳輸的高效便捷,我們當今時代的每個人都應該認清局勢,順勢而為,主動駕馭數據,讓數據創造更大價值。
對比《大數據》,結合平時工作和學習的實際情況,我認為我們應該認真思考和解決好以下三個問題:
一、什么是大數據?以前我們總認為不相關的數據是沒有用,但是徐子沛先生卻徹頭徹尾的顛覆了我們的固有思維,他告訴我們不需要強求每條數據都那么真實準確,從大量的數據中我們就可以得出相對準確的結果。例如:google通過匯總分析某個地區的人們搜索和流感有關的詞匯等關鍵字提前一周準確的預測了這個地區流感的爆發。通過學習,我深刻意識到大數據無處不在,只要我們細心,就可以輕松挖掘出我們身邊的那些大數據,并做一些有意義的關聯,就像書中說的那樣,未來成功的公司必定是是那些擁有大量數據、并使用那些數據為大眾提供服務的公司。
二、如何收集數據?
面對信息大爆炸時代的海量數據,我們必須充分利用高科技手段,高效有序地收集整理各種數據,以滿足現實工作中越來越廣泛的信息需求。為此,建議我們廣電系統可以規范文檔備案和上傳制度,建立統一的文檔共享中心。通過互聯網、電子計算機等現代技術手段搜集匯總各部門的縱向數據以及部門間的橫向數據,通過縱橫交錯的數據網絡,針對特定主題,持續不斷地收集相關數據,增加現實工作的高效性和便捷性。
三、怎么利用數據?
收集數據的目的是為了分析利用數據。這里舉一個現代財務發展史上的偉大發明,財務三大報表,通過分析財務報表,閱讀者可以直觀的了解到企業的財務全貌,大大加快了現代公司制企業發展的進步步伐。當今社會,依托于現代計算機技術的高速發展和現有社會結構的深刻變革,我們可以大力引入中介機構,通過培訓,定制軟件等方式,向員工貫徹新理念,普及新知識,迅速改變落后工作狀態,加快提升業務運行效率。
綜上,大數據時代是我們信息化社會發展必然趨勢,身處其中的我們還有很多知識需要學習,許多思維需要轉變。只有緊跟時代潮流,迅速響應調整,才能在新一輪市場競爭中把握主動,脫穎而出。成就更偉大的事業,收獲更宏偉的人生。
2015年11月23日。
版權聲明:此文自動收集于網絡,若有來源錯誤或者侵犯您的合法權益,您可通過郵箱與我們取得聯系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwendaquan/pingyujiyu/42020.html