教案模板的編寫需要考慮教學目標的明確性、教學內容的合理性和教學活動的創新性。這里收集了一些教師們分享的獨特教案模板,希望能為您提供新的思路。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。2月19日上午,在沈家門第一小學,我有幸聆聽了趙斌娜老師執教的《三角形的內角和》一課,這就是一堂好課。
趙老師營造了寬松和諧的課堂氣氛,讓學生能主動參與學習活動,既關注了學生的個人差異和不同的學習需求,又注重了學生的個體感悟,強調情感體驗的過程。確立了學生在課堂教學中的主體地位,使學生在學習過程中既調動了積極性,又激發了學生的主體意識和進取精神。學生在自主、合作、探究的學習方式中互相激勵,取長補短,能團結協作,最終形成了相應能力;同時培養了學生刻苦鉆研,事實求是的態度。
教學過程是一堂課關鍵中的關鍵,新課標提出數學教學是數學活動的教學,而數學活動應是學生自己建構知識的活動。教師讓學生“在參與中體驗,在活動中發展”。本節課有操作活動、自主探索與合作交流、應用活動三個方面,下面我重點談談操作活動。
1、在實踐材料上下了工夫。
操作實踐的材料是精心選擇的,老師為學生準備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個,這樣學生在操作時候,便于選擇、測量、拼擺、觀察、思考問題,而且這些三角形顏色醒目、比較大,學生應用起來很得手,操作的材料和學生的動手實踐配合恰當。
2、找準時機讓學生進行實踐操作。
本節課安排了兩次操作活動:一是在得出三角形內角和規律前進行實踐操作,促使學生在實踐操作中探究新知識;二是在初步得出規律之后,讓學生通過實踐操作來驗證新知識。幫助學生清楚地認識到第一次出現內角和偏差的原因是測量誤差造成的。給學生提供的這兩次動手實踐的機會,不僅提高了操作的效果,更重要的使“聽數學”變為“做數學”。促使學生在“做數學”的過程中對所學知識產生了深刻的體驗,從中感悟和理解到新知識的形成和發展,體會了數學學習的過程與方法,獲得數學活動的經驗。
3、把實踐操作和數學思維結合起來。
學生通過實踐操作獲得的認識是一種感性的認識,是外在的直觀的印象。在本節課中趙老師在學生實踐操作的基礎上引導學生把動手實踐和數學思維結合起來,先讓學生思考出可以用量、撕和拼的方法來推導三角形內角和的度數,接著引導學生說出量的方法,最后讓學生實際測量。采取邊說邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學的基礎上及時對三角形內角和規律進行抽象概括。做到邊動手,邊思考。同時學生獲得了一種數學思想和方法,學會了解決一些類似的一系列的問題,提高了實踐動手的有效性。
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數,認識了三角形的基本特征及其分類,由于學生的數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題策略的多樣化。
2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°并會應用這一規律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現性評價:通過小組討論表現、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)
檢測學習目標1的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
學具準備:三角板、量角器.
這節課的教學我通過一下四個環節完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環節,觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發現在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發現再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環節,動手操作,探索新知。
1、直角三角形的內角和。
(一)直角三角形內角和
先讓學生觀察一副三角板的內角和,發現都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環節引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
(二)、銳角三角形、鈍角三角形的內角和
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環節、鞏固新知,拓展應用
用三角形的這一特性來解決一些問題
1、基本練習
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習
拼一拼、想一想
(1)兩個三角形拼成大三角形,說出大三角形的內角和
(2)一個三角形去掉一部分
引導學生發現,無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環節、總結評價、延伸知識
通過這個環節讓學生談一談自己的收獲或感受,對本節課的知識進行拓展升華。
三角形的內角和
猜測(180度)
驗證:測量、撕拼、折疊結論
三角形的內角和是180度
我的板書簡明扼要,體現了本節課的重點,而且是對本節課學習方法的一個回顧。
各位老師:
你們好,我是來應聘xx數學老師的x號考生,我今天抽到的試講題目是《三角形的內角和》,下面開始我的試講。
大家拿出事先準備好的三角板和量角器吧,同學們,你們現在用量角器來測量一下每一個三角形的角的度數,待會老師會進行統計。(轉身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數據有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發現了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內角和是180度。
可是是不是所有內角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,并且測量每個內角度數,并報給老師內角和。好,請第一排的女生起來回答,你的三個內角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。
下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎么來驗證我們剛剛得出的這個結論呢?給大家十分鐘時間來討論。
老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內角和是180度。
那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。
大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數,有沒有同學告訴我剩下的度數???趕緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。
這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!
《三角形內角和》是北師大版《數學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握三角形的內角和是180度這一規律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發現三角形的內角和是180度。教材還安排了試一試,練一練的內容。已知三角形兩個內角的度數,求出第三個角的度數。
【學生分析】。
經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發表自己的見解,對數學產生了濃厚的興趣。1.知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
【學習目標】。
能力目標:培養學生主動探索、動手操作的能力。培養學生收集、整理、歸納信息的能力。使學生養成良好的合作習慣。
情感目標:讓學生體會幾何圖形內在的結構美。
【教學過程】。
一、情景激趣,質疑猜想。
播放動畫片:在圖形王國中,有一天三角形大家庭里為三角形內角和的大小爆發了一場激烈的'爭吵。
鈍角三角形大聲叫著:我的鈍角大,我的內角和一定比你們的內角和大。銳角三角形也不示弱:我的銳角雖然比鈍角小,但我的內角和并不比你小。直角三角形說:別爭了,三角形的內角和都是180。我們的內角和是一樣大的。
師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?
學生進行猜想,自由發言。
(設計意圖:教師借助多媒體技術創設問題情境,架起數學學習與現實生活,抽象數學與具體問題之間的橋梁,激發了學生的學習興趣。鼓勵學生主動質疑猜想是培養學生學會學習的重要途徑。)。
二、自主探究,驗證猜想。
生1:能。我量出三角形的三個內角和度數,加起來是否接近180(量的時候可能會有些誤差)。
生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧?。▽W生把三角形的三個內角分別標上1、2、3,以免在剪拼時把內角搞混了。)。
學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。
(設計意圖:驗證猜想為學生提供了做數學的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數學知識的產生發展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創新能力的發展。)。
三、交流評價,歸納結論。
學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。
實驗報告單。
實驗名稱。
實驗目的。
。
實驗材料。
尺子。
剪刀。
量角器。
。
我的方法。
。
我的發現。
。
我的表現。
自評。
。
互評。
。
學生在展示過程中,充分交流和討論實驗中各自使用的方法和發現,教師要對學生的閃光點及時進行表揚和鼓勵。
師生共同歸納,得出結論:
一、說課內容:北師大版義務教育課程標準實驗教材小學數學四年級下冊第二單元第三節----《三角形的內角和》一課。
二、教材分析:
在這一環節我要闡述四方面的內容:
1、三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,教材呈現教學內容時,安排了一系列的實驗操作活動。讓學生通過探索,發現三角形的內角和是180度。
2、學情分析:
學生已經知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內角和是180°的結論。
3、教學目標:
a、讓學生親自動手,發現,證實三角形的內角和等于180度。并能初步運用這一性質解決有一些實際問題。
b、在經歷“觀察、測量、撕拼、折疊”的驗證的過程中培養學生觀察能力,歸納能力、合作能力和創造能力。
4、教學重難點:
經歷三角形的內角和是180度這一知識的形成,發展和應用的全過程。
5、教學難點:
讓學生用不同方法驗證三角形的內角和是180度。
三、教學準備:
在備課過程中,我閱讀了農遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農遠光盤中的多媒體課件,用課件適時播放。
四、教法分析
為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調“教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程。要激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們積極主動地探索,解決數學問題,發現數學規律,獲得數學經驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發現法、合作探究法和直觀演示法。
五、學法分析
在學法指導上,我把學習的主動權交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現了學生動手實踐、合作交流,自主探索的學習方式。
六:教學流程:
(一)猜迷激趣,復習舊知。,
興趣是最好的老師,開課我出示了一則謎語。調動學生學習的積極性。
形狀是似座山,穩定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)
由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關三角形的知識,同時很自然引出對“三角形內角和”一詞的講解,為后面的探索奠定基礎。
(二)創設情境,巧引新知(課件出示)
(三)驗證猜想,主動探究。
本環節是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經歷知識的形成過程。
“你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:
a、先獨立思考,你想怎樣驗證?
b、再小組合作探究,運用多種方法驗證。
c、最后匯報,展示你的驗證方法。
1.量角求和
這個驗證方法應是全班同學都能想到的,因此,在這一環節我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發現三角形的三個內角和都是180度。
2.拼角求和
通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發現這三個三角形的內角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。
3.折角求和
有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內角剛好組成平角呢?這一驗證方法是本課教學的一個難點。
在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發現。最后歸納出結論:所有三角形的內角和都是180度。
(四)應用新知,解決問題。
數學離不開練習。本節課我把圖像、動畫等引入課件,使練習的內容具有簡單的背景與情節,使學生對解題產生了濃厚的興趣。
我設計了四個層次的練習:有序而多樣。
1)基本練習:讓學生通過這一習題,掌握求未知角的一般方法。
2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數學,數學能解決生活實際問題,真切體驗到學的是有價值的數學。
3)鞏固提高:使學生了解在間接條件下求未知角的方法。
4)拓展延伸。讓學生體會到數學中輔助線的橋梁作用,在潛移默化中滲透一個重要數學思想―――轉化,為以后學習數學打下堅實的基礎。
(五)全課小結完善新知
1、這節課我們學到了什么知識?2、你有什么收獲?
通過學生談這節課的收獲,對所學知識和學習方法進行系統的整理歸納。
(六)板書設計
三角形的內角和
量角撕拼折角拼圖
三角形的內角和是180度。
六、說效果預測:
本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養了他們主動探索的精神。促進學生良好思維品質的形成,達到預想的教學目的。使學生在探索中學習,在探索中發現,在探索中成長!
(一)知識與技能:掌握“三角形內角和定理”的證明及其簡單應用,讓學生探索發現三角形的內角和是180。
(二)過程與方法:通過量算、撕拼、折拼等活動培養學生觀察、操作、探究、歸納、概括、反思等能力和初步的空間想象力,感受數學的轉化思想;發展學生的空間觀念和初步的邏輯思維能力;能運用所學知識解決簡單的問題,訓練學生對所學知識的運用能力。
(三)情感態度與價值觀:
1、滲透轉化遷移思想,培養學生大膽質疑的勇氣和嚴謹科學的精神,及與他人合作交流的意識。
2、讓學生切實感受到從實驗中得到的現象,經過簡單的推理證明以后可以成為我們的一般公理,初步感受從個別到一般的思維過程。
教學重點:
讓學生經歷“三角形內角和是180度”這一知識的形成、發展和應用的全過程;知道三角形的內角和是180度并且能應用。
教學難點:
教學過程:
一、激趣引入。
1、畫三角形。
2、畫有兩個直角的三角形。
二、探究新知。
60°+30°+90°=180°。
45°+45°+90°=180°。
1、小組合作完成。
2、匯報。
第一種:通過度量完成。
第二種:通過撕拼或者折拼完成。
第三類:通過長方形推算得出。
其他類。
3、小結:
(課件演示)剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出,無論是什么樣的三角形的內角和都是180°,你們真不錯,讓我們帶著自豪的語氣大聲地讀出“三角形的內角和是180°”
4、知識升華:
三、實踐檢驗。
2、老師不小心把墨水倒在了三角形上,你知道它的度數嗎?
3、數學日記。
四、評價樹。
你對自己的評價。
結束語:
數學是一棵大樹,三角形只是它的一片葉子;
生活是一棵大樹,數學只是它的一片葉子,
讓我們欣賞著、享受著三角形為生活添得美!
在整個教學設計上謝老師充分體現“以學生發展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證{自主探究}——鞏固內化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現在以下幾點:
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執,到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發學生探究數學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證{自主探索}:學生形成統一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數學探究活動{即驗證三角形的內角和是否是180度?},在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數學的思考融入不同層次的練習之中,很好的發揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數,使學生在圖形變化的過程中掌握知識,培養思維的靈活性,從中發展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數學思維得到不斷的發展。
5、有一定的拓展創新:數學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養學生應用知識的能力,更能培養學生的創新意識和創新精神。
總之,本節課教學活動中謝老師充分體現以下特點:以學生發展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現了層次性,知識技能得于落實和發展。是一節非常成功的課。
文檔為doc格式。
。
三角形的內角和是北師大版四年級下冊第二單元的內容。三角形的內角和是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。
本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象三角形的內角和的規律,打下了堅實的基礎。
因此,我確定本節課的教學目標是:
知識與技能:通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的和等于180。知道三角形兩個角的度數,能求出第三個角的度數。能應用三角形內角和的性質解決一些簡單的問題。
發展學生動手操作、觀察比較和抽象概括的能力。
情感、態度與價值觀:體驗數學活動的探索樂趣,體會研究數學問題的思想方法。
學生經歷探究三角形內角和的全過程并歸納概括三角形內角和等于180。
三角形內角和的探索與驗證,對不同探究方法的指導和學生對規律的靈活應用。
整個教學將體現以人為本,先放后扶的教學策略。放,不是漫無目的的放,而是為學生提供足夠的探究規律的材料和時間,放手讓學生自主學習,合作探究;扶,則是根據學生的不同探究方法和出現的錯誤,給予恰當指導,引導學生歸納概括出規律。
《課程標準》明確指出:要結合有關內容的教學,引導學生進行觀察、操作、猜想,培養學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數學思維方式。在教學中,學生通過測量、拼折、驗證等方式確定三角形內角的度數和。這樣,既培養了觀察能力和歸納概括能力,又體現了動手實踐、合作交流,自主探索的學習方式,同時也培養了探索能力和創新精神。
基于以上分析,我以猜測、驗證、結論和應用四個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。
通過出示一個角形,讓學生說知道三角形的知識來引出三角形的內角的概念,讓學生自由猜測,三角形內角和是多少?引出課題,以疑激思。
動手實踐,自主探究,是學生學習數學的重要方式,新課程的一個重要理念就是提倡學生做數學用親身體驗的方式來經歷數學,探究數學,這要求老師首先為學生提供充分的研究材料,以及充裕的時間,保證學生能真正地試驗,操作和探索。
這一環節我設計為以下三步:
1、操作感知。
組織學生通過算一算初步感知三角形的內角和。根據學生特點,為了節約學生上課的時間,作為預習作業,我提前讓學生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數,寫在三角形對應的角上,也填在書上的表格里。這時直接讓學生計算,學生匯報計算結果,不同的學生可能會有不同的結果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點誤差)都給與肯定。這時可引導學生得出結論(強調在排除測量誤差的前提下):三角形的內角和是180度。在這一過程中,學生有困惑,有疑問,而正是這些困惑激發了學生更強的探究欲望,正是這些疑問,使得合作成為學生的內在需要。
2、小組合作。
針對探究過程中不同思維能力的學生,要做到因材施教。對于得出結論的學生要鼓勵他們思考新的方法,對于無法下手的學生,要啟發他們知道三角形的內角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學習中,老師只是起一個引導者的作用,引導學生不斷地深入探究,盡可能用多種合理的方法,驗證結論。
3、交流反饋,得出結論。
學生完成探究活動之后,在有親身體驗的基礎上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關注的不是學生最后論證的結果,而是學生思維的過程。學生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內角和是180度,并通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發現這一規律是具有普遍性的,對于任意三角形都是適用。在學生探究之后,我用課件重新演示了3種方法,讓學生有一個系統的知識體系。
揭示規律之后,學生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內化。根據學生能力的不同,我將練習分為以下3個層次。
1、基礎練習。要求學生利用三角形內角和是180度在三角形內已知兩個角,求第三個角。由于學生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導學生注意一題多解。
2、提高練習。如已知一個直角三角形的一個角的度數,求另一個角的度數;已知一個等腰三角形的頂角或底角的度數,求底角或頂角的度數。
3、拓展練習。針對不同思維能力的學生,我設計的思考題是要求學生應用三角形內角和是180的規律,求多邊形的內角和。我的目的不僅僅是為了讓學生去求解多邊形的內角和,更重要的是為了讓學生靈活應用知識點,培養學生的空間思維能力。
這樣安排可以兼顧不同能力的學生,在保證基本教學要求的同時,盡量滿足學生的學習需要,啟發學生的思維活動。
本節課通過這樣的設計,學生全身心投入到數學探究互動中去,學生不僅學到科學探究的方法,而體驗到探索的甘苦,領略成功的喜悅,學生在探索中學習,在探索中發現,在探索中成長,最終實現可持續性發展。
猜測驗證結論應用。
探索三角形內角和的度數以及已知兩個角度數求第三個角度數。
教學目標:
1、通過測量、撕拼、折疊等探索活動,使學生發現三角形內角和的度數是180?
2、已知三角形兩個角的度數,會求第三個角的度數。
3、培養學生動手實踐,動腦思考的習慣。
教學重點:
教學難點:
教具學具準備:
教材與學生。
教材創設了一個有趣的問題情境,通過對大小兩個三角形內角和的大小比較來激發學生探索的興趣。教材為了得到三角形內角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。
學生在已有的會用量角器來度量一個角的度數的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。
教學過程:
一、呈現真實狀態。
學生各抒己見。
二、提出問題:
師;剛才我們觀察三角形哪個內角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
(1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內角和度數,并做好記錄,記錄每個內角的度數。
(2)組內交流。
(3)全班交流。由小組匯報測出結果(三角形內角和)。
(4)師小結:我們通過測量發現,每個三角形的內角和測出結果接近180。
三。自主探索、研究問題、歸納總結:
(一)組內探索:
(1)以小組為單位探索更好的辦法。
(2)以小組為單位邊展示邊匯報探索的過程與發現的結果。
(有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發現結果,在探索中發現問題,在討論中解決問題,是學生學習到良好的學習方法)。
(3)把你沒有想到的方法動手做一次。
(4)根據學生的反饋情況教師進行操作演示。
(二)教師演示。
撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示。
2.師:這三個內角放在一起你有什么發現?
生:發現三個內角拼成一個平角。
師:平角是多少度呢?說明什么?
生:180?說明三個內角和剛好等于180。
師:這種方法是不是適用各種三角形呢?
進行實驗后,結果發現同樣存在這一規律,三角形三個內角和是180。
折疊法:師:剛才我們通過測量發現三角形內角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發現三角形的三個內角剛好拼成一個平角,進一步說明三個內角和是180,現在再來演示另一種實驗,再次證明我們的發現。
你們也來試一試好嗎?
在學生完成這一實踐后肯定這一發現。
四。鞏固練習,知識升華。
1.完成課本第28頁的“試一試”第三題。
2.想一想:鈍角三角形最多有幾個鈍角?為什么?
3.有一個四邊形,你能不用量角器而算出它的四個內角和嗎?
試一試,看誰算得快。
師:誰來說說自己的計算過程?
[回答可能有二]:
(一種全部說是:)。
師:請問,你們是怎么想的,為什么這么認為?
生:……。
師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧?。◣熢谡n題“內角和”下面劃上橫線,打上問號)。
(一種有一部分同學說是,有一部分同學說不是:)。
師:看來,大家的意見不一致,想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧?。◣熢谡n題“內角和”下面劃上橫線,打上問號)。
(二)動手操作,探究新知。
師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?
生:我準備用量的方法。
師:然后呢?
生:然后把它們三個內角的度數相加起來,就知道了三角形的內角和是多少?
師:說的真不錯,還有沒有其它的方法?
生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創意,等一會兒用你的行動來驗證你的猜想吧?。?。
生:……。
(如生一時想不到,師可引導:他是把三個內角的度數相加在一起,我們能不能想辦法把三個內角放在一起進行觀察,看看能不能發現些什么呢?)。
師:好啦,老師相信咱們班的同學個個都是小數學家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內角上編上序號,角一、角二、角三,現在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!
開始吧?。▽W生研究,師巡回指導)預設時間:5分鐘。
師:老師看各小組已經研究好了,哪位同學愿意上來交流一下?
師:請你告訴大家,你是怎么研究的,最后發現了什么結果?
(預設:如果第一類同學說的是量的方法)。
師:你是用什么來研究的?
生:量角器。
師:那請你說一下你度量的結果好嗎?
(生匯報度量結果)。
生:180度。
師:那到底三角形的內角和是不是180度呢?還有哪位同學有其它的方法進行驗證嗎?
生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們三個角組成的度數。
師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點擊flash:把三角形按照三個內角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調個頭,插在角一角二的中間,這樣它們三個內角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發現?)。
生:我們還用了折的方法(生介紹方法)。
師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點擊flash:先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向對邊對折,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們三個內角就形成了一個大角,這個大角是個什么角呢?)。
生:是個平角。180度。
師:請這位同學來說給大家聽聽吧!
生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內角和是360度,那么一個三角形的內角和就是180度。
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內角和也將是180度。
師:把你們偉大的發現讀一讀吧!
(三)拓展應用,深化認識。
師:請看老師手上的這兩個三角形,左邊這個內角和是多少度?(生:180度)右邊呢(生:也是180度)。
師:現在老師把它們拼在一起,這個大三角形的內角和又是多少度呢?
(生答后師引導歸納得出:三角形的內角和與形狀大小無關,組成的大三角形的內角和依然是180度。)。
師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執了起來,想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內容:一個大一些的直角三角形說:“我的個頭比你大,我的內角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)。
師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!
師:好,請看大屏幕!
(出示基礎練習)在一個三角形中角一是140度,角三是25度,求角二的度數。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵:說的真好!
出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。
師:同學們,今天我們一起學習了三角形的內角和,你有哪些收獲呢?
師:嗯,真不錯,你們知道嗎?三角形的內角和等于180度是法國著名的數學家帕斯卡在1635年他12歲時獨自發現的,今天憑著同學們的聰明智慧也研究出了三角形的內角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!
師:好,下課!同學們再見!
教學內容:
教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
教學目標:
1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。
3、培養學生動手動腦及分析推理能力。
重點難點:
教學準備:
導學過程。
一、復習。
1、什么是平角?平角是多少度?
2、計算角的度數。
3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)。
二、新知。
(設計意圖:讓學生經歷質疑驗證結論這樣的思維過程,真正整體感知三角形內角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學知識背景,滲透數學知識之間的聯系,有效地避免了新知識的“橫空出現”。同時,培養學生的綜合素養)。
1、讀學卡的學習目標、任務目標,做到心里有數。
4、驗證:
(1)初證:用一副三角板說明直角三角形的內角和是180°。
(2)質疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內角和是180°(師巡視)。
(4)匯報結論(清楚明白的給小組加優秀10分)。
5、結論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說明三角形無論大小它的內角和都是180°(課件演示)。
7、看微課感知“偉大的發現”(設計意圖:讓學生感受自己所做的和帕斯卡發現三角形內角和是180°的過程是一樣的,從而培養孩子的自信心和創造力。)。
三、知識運用(課件出示練習題,生解答)。
1、填空。
(2)一個直角三角形的一個銳角是50,則另一個銳角是()。
(4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
(5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
2、判斷。
(1)一個三角形中最多有兩個直角。()。
(3)有一個角是60的等腰三角形不一定是等邊三角形。()。
(5)直角三角形中的兩個銳角的和等于90。()。
四、拓展探究。
根據所學的知識,你能想辦法求出四邊形、五邊形的內角和嗎?
1、小組討論。2、匯報結果。3、課件提示幫助理解。
五、自我評價根據學卡要求給自己評出“優”“良好”“合格”。
各位評委、老師:
我說課的題目是《三角形內角和》,內容選自人教版九年義務教育七年級下冊第七章第二節第一課時。
數學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉變一定會促進學生的發展、促進教育的長足發展,在未來的教學過程里,教師要做的是:幫助學生決定適當的學習目標,并確認和協調達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創造豐富的教學情境,培養學生的學習興趣,充分調動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支持性的'、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰,適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發現、形成。
三角形的內角和定理揭示了組成三角形的三個角的數量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內角和定理也是幾何問題代數化的體現。
處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。
1.知識目標:在情境教學中,通過探索與交流,逐步發現“三角形內角和定理”,使學生親身經歷知識的發生過程,并能進行簡單應用。能夠探索具體問題中的數量關系和變化規律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經驗,進行富有個性的學習。
2.能力目標:通過拼圖實踐、問題思考、合作探索、組內及組間交流,培養學生的的邏輯推理、大膽猜想、動手實踐等能力。
3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。
4.情感、態度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數學,遇到困難不避讓,在數學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。
采用“問題情境——建立模型——解釋、應用與拓展”的模式展開教學。
采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。
大家好!
今天我說課的題目是《三角形的內角》,我將從如下方面作出說明。
(一)教學內容的地位
本節課是在研究了三角形的有關概念和學生在對 “三角形的內角和等于1800 ”有感性認識的基礎上,對該定理進行推理論證。它是進一步研究三角形及其它圖形的重要基礎,更是研究 多邊形問題轉化的關鍵點;此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問題的一種重要工具,因此本節是本章的一個重點。
(二)教學重點、難點:
三角形內角和等于180度,是三角形的一條重要性質,有著廣泛的應用。雖然學生在小學已經知道這一結論,但沒有從理論的角度進行推理論證,因此三角形內角和等于180度的證明及應用是本節課的重點。
另外,由于學生還沒有正 式學習幾何證明,而三角形內角和等于180度的證明難度又較大,因此證明三角形內角和等于180度也是本節課的難點。
突破難點的關鍵:讓學生通過動手實踐獲得感性認識,將實物圖形抽象轉化為幾何圖形得出所需輔助線。
基于以上分析和數學課程標準的要求,我制定了本節課的教學目標,下面我從以下三個方面進行說明。
(一)知識與技能目標:
會用平行線的性質與平角的定義證明三角形的內角和等于1800,能用三角形內角和等于180度進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉化思想在解決問題中的應用。
(二)過程與方法目標:
經歷拼圖試驗、合作交流、推理論證的過程,體現在“做中學”,發展學生的合 情推理能力和邏輯思維能力。
(三)情感、態度價值觀目標:
通過操作、交流、探究、表述、推理等活動培養學生的合作精神,體會數學知識內在的聯系與嚴謹性,鼓勵學生大膽質疑,敢于提出不同見解,培養學生良好的學習習慣。
七年級學生的特點是模仿力強,喜歡動手,思維活躍,但思維往往依賴于直觀具體的形象,而學生在小學已通過量、拼、折等實驗的方法得出了三角形內角和等于180度這一結論,只是沒有從理論的角度去研究它,學生現在已具備了簡單說理的能力,同時已學習了平行線的性質和判定及平角的定義,這就為學生自主探究,動手實驗,討論交流、嘗試證明做好了準備。
根據新課程標準的要求,學習活動應體現學生身心發展特點,應有利于引導學生主動探索和發現,因此,我采用了動手操作— 觀察實驗—猜想論證的探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體 現了教師是教學活動的組織者、引導者、合作 者,學生才是學習的主體。并教給學生通過動手實驗、觀察思考、抽象概括從而獲得知識的學習方法,培養他們利用舊知識獲取新知識的能力。
我結合七年級學生的年齡特點,采用了“1.情景激趣 引出課題”的環節引入課題,這樣可以激發學生學習興趣和求知欲,為探索新知識創造一個最佳的心理和認知環境。讓學生說明三角形內角和是180度,是本節課的重點、難點,為此我設計了“2.自主探索 動手實驗 ”“3.討論交流 嘗試證明”以下兩個環節。 定理的掌握必須要有訓練作為依托,因此我設計了“4.應用新知 鞏固提高。為了培養學生學習數學的興趣,在競爭中體驗成功的快樂。我設計了“5. ‘漁技’大比拼”這4道習題既含蓋了方程的思想又包括了整體的思想,還讓學生提前感受到了反證法的方法,有利于學生掌握重要的數學思想方法?;仡櫴谷擞洃浬羁?,反思促人進步。在“6.暢談體會 課外延伸 ”這一環節我選擇從三個方面,讓學生進行 回顧反思和作業補充。我認為學生要從一堂課中得到收獲不僅僅是知識上的,更重要的是讓他們通過這種方式,獲取比知 識本身更重要的東西,那就是數學方法,數學能力以及對數學的積極情感。
本節課的設計從學生已有的知識經驗出發,遵循學生的認知規律,將實物拼圖與說理論證有機結合,在動手操作,合情推理的基礎上進行嚴密的推理論證,使學生對知識的認識從感性逐步上升到理性。以問題為載體,在探究解決問題策略的過程中學會知識、感悟方法、訓練思維、發展能力,練習的設計起點低、范圍廣、有梯度,以滿足不同程度學生的需要。樹立大數學觀 ,把課堂探究 活動延伸到課外,在課與課之間,新舊知識之間,數學與生活之間搭建橋梁,為學生長遠的發展奠基。
本節課的教學在一種輕松愉快的氛圍中完成,大部分學生能參與活動中,突出了重點 ,突破了難點。完成了教學任務。取得了較好的教學效果。練習除注重基礎外 并進行了延伸。拓寬了學生思維的空間。美中不足的是,還有少部分學習基礎較差的學生可能沒有在參與活動中去思考,收獲不大。
新課程的教學評價對老師和學生都提出了新的要求 :因此整個教學過程中我對學生的如下方面作出了多元化的關注:1、關注學生探索結論、分析思路和方法的過程。2、關注學生說理的能力和水平。3、關注學生參與教學活動的程度。以期待人人都能學有 所得,不同的學生在課堂上得到不同的發展。
以上是我對這節課的初淺認識,希望得能到各位專家、各位老師的指導,謝謝大家!
一、構建新的課堂教學模式。
傳統的教學往往只重視對結論的記憶和模仿,而這節課老師把學生的學習定位在自主建構知識的.基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養學生勇于猜想,大膽創新的精神。
教學中趙老師遵循的基本教學原則是激勵學生展開積極的思維活動.先創設猜角的游戲情景,讓學生對三角形的三個角的度數關系產生好奇,引發學生的探究欲望.
三、為學生提供了大量數學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔.”這正是課堂教學改革中學生的主體性的表現。所以在這節課中趙老師樹立了數學教學為學生服務,創設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發學生去思考,去探究.這樣學生的潛能的以激活,思維展開了想象,能力得以發展.
四、給學生一個開放探究的學習空間.
培養學生的問題意識是數學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發出新的問題,使學生體會到成功的喜悅,使數學課堂充滿挑戰.所以課堂上老師沒有因學生發現三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規律,這樣學生帶著問題在課后向更高的學習目標繼續探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
一、構建新的課堂教學模式。
傳統的教學往往只重視對結論的記憶和模仿,而這節課老師把學生的學習定位在自主建構知識的基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養學生勇于猜想,大膽創新的精神。
教學中老師遵循的基本教學原則是激勵學生展開積極的思維活動。先創設猜角的游戲情景,讓學生對三角形的三個角的度數關系產生好奇,引發學生的探究欲望。
三、為學生提供了大量數學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔?!边@正是課堂教學改革中學生的主體性的表現。所以在這節課中老師樹立了數學教學為學生服務,創設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發學生去思考,去探究。這樣學生的潛能的以激活,思維展開了想象,能力得以發展。
四、給學生一個開放探究的學習空間。
培養學生的問題意識是數學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發出新的問題,使學生體會到成功的喜悅,使數學課堂充滿挑戰。所以課堂上老師沒有因學生發現三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規律,這樣學生帶著問題在課后向更高的學習目標繼續探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
將本文的word文檔下載到電腦,方便收藏和打印。
《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內角和是180°這一規律具有重要意義。
(二)教學目標
基于以上對教材的分析以及對教學現狀的思考,我從知識與技能,教學過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:
1、通過量一量、算一算、拼一拼、折一折的小組活動的方法,探索發現驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。
2、通過把三角形的內角和轉化為平角進行探究實驗,滲透轉化;的數學思想。
3、通過數學活動使學生獲得成功的體驗,增強自信心。培養學生的創新意識,探索精神和實踐能力。
(三)教學重,難點
因為學生已經掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是內角的概念,如何驗證得出三角形的內角和是180°。因此本節課我提出的教學的重點是:驗證三角形的內角和是180°。
本節課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。
因為《課程標準》明確指出要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數學思維方式。
我以引入,猜測,證實,深化和應用五個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。
(一)引入
呈現情境:出示多個已學的平面圖形,讓學生認識什么是內角;。(把圖形中相鄰兩邊的夾角稱為內角)長方形有幾個內角(四個)它的內角有什么特點(都是直角)這四個內角的和是多少(360°)三角形有幾個內角呢從而引入課題。
(二)猜測
提出問題:長方形內角和是360°,那么三角形內角和是多少呢
【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。
(三)驗證
(2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。
(3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。
(4)畫:根據長方形的內角和來驗證三角形內角和是180°。
一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。
【設計意圖】利用已經學過的知識構建新的數學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯系。在整個探索過程中學生積極思考并大膽發言,他們的創造性思維得到了充分發揮。
(四)深化
質疑:大小不同的三角形,它們的內角和會是一樣嗎?
觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的大小沒有變。
結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。
實驗:教師先在黑板上固定小棒,然后用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小。這樣多次變化,活動角越來越大,而另外兩個角越來越小。最后,當活動角的兩條邊與小棒重合時。
結論:活動角就是一個平角180°,另外兩個角都是0°。
【設計意圖】小學生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯系起來,通過讓學生觀察利用角的大小與邊的長短無關的舊知識來理解說明。
對于利用精巧的小教具的演示,讓學生通過觀察,交流,想象,充分感受三角形三個角之間的聯系和變化,感悟三角形內角和不變的原因。
(五)應用
1、基礎練習:書本練習十四的習題9,求出三角形各個角的度數。
(2)將一個大三角形分成兩個小三角形,這兩個小三角形的內角和分別是多少?
4、智力大挑戰:你能求出下面圖形的內角和嗎書本練習十四的習題
【設計意圖】習題是溝通知識聯系的有效手段。在本節課的四個層次的練習中,能充分注意溝通知識之間的內在聯系,使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。
第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數。
第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征,較好地溝通了知識之間的聯系。
第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。
第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯系起來,并逐步發現多邊形內角和的規律,以此促進學生對多邊形內角和知識的整體構建。能充分注意溝通知識之間的內在聯系,使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。
今天我說課的內容是人教版九年義務教育小學數學四年級下冊第五單元第85頁的《三角形的內角和》。
2、教材分析。
《三角形的內角和》是探索型的教材。是在學生學習了三角形、長方形等基本圖形,以及角的度量、三角形的特征、分類的基礎上進行教學的,學生對這一知識的理解和掌握又將為進一步學習幾何知識打下堅實的基礎。
仔細分析教材的知識結構,它是分成3個部分來呈現的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內角和的規律,第三部分是運用規律、解決問題。教材這樣編排由發現問題,到驗證問題,再到運用規律,充分體現了知識結構的有序性和強烈的數學建模思想,既符合四年級學生的認知規律,又突出了本課教學的重點。
3、教學目標。
根據小學數學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特征,將本節課的目標制定為以下幾點:
認知技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發現“三角形內角和等于180度”的規律。
數學思考:在操作實驗中,讓學生感受圖形的轉化過程及數學建模思想,初步培養學生的空間思維觀念。
解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養學生的應用意識。
情感態度:通過各種實驗活動,激發學習興趣,體驗學習成功感,并在教學中,感受生活與數學的密切聯系。
4、教學重點難點。
根據本節課的教學目標及對編者意圖的理解。將運用各種實驗方法探究三角形內角和為180度的過程并掌握規律,運用規律解決實際問題確定為本節課的教學重點。而同時學生難以理解不易掌握的探究規律的全過程則是本節課的教學難點。
5、教學具準備。
學生每人準備量角器、小剪刀、白紙各一張。
二、說教法學法。
我要說的第二塊是教法學法。
新課程標準的基本理念就是要讓學生“人人學有價值的數學”。強調“教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程”。
因此,我運用“猜一猜--量一量--拼-拼--折一折--看一看……”的教學法,讓學生大膽猜想,自主探索三角形的內角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內角的度數和。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式。
在整個教學設計上力求充分體現“以學生發展為本”教育理念,將教學思路擬定為“談話激趣設疑導入--猜想--驗證{自主探究}--鞏固新知--全面提升”,努力構建探索型的課堂教學模式。
當然,一堂課的效果如何,還要看課堂結構是否合理。接下來,我就來說說我的教學程序設計。
三、說教學流程。
根據我對教材的把握和對學情的了解,設計了4個環節展開教學。
一、創設情境,發現問題。
小游戲:猜一猜藏在信封后面的是什么三角形。
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創設的不是生活中的情境,而是數學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現出學生在認知上的矛盾,學生用已經學的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的這種認知沖突,激發學生的學習興趣,讓學生在疑問與猜想中尋找驗證的方法。)。
教學進入第二環節--引導探究。
二、動手操作,探究規律。
1.介紹內角、內角和,并提出猜想。
師:我們現在研究三角形的三個角,都是它的內角。
師:今天我們就來一起探究《三角形的內角和》。猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
2.確定研究范圍。
師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)。
請你想個辦法吧!
(通過引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數學思想)。
3.建立模型,解決問題。
(一)測量法:
(1)學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。
(3)記錄小組測量結果及討論結果。
實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片。
方法一三角形的形狀每個內角的度數三個內角的和。
今天我說課的內容是人教版九年義務教育小學數學四年級下冊第五單元第67頁的《三角形的內角和》。根據xxx教授的授課七步法,即說教材,說學情,說目標,說模式,說方法,說設計,說板書,我將進行本課的說課。
一、說教材。
“三角形的內角和”是新課標人教版四年級下冊第五單元第三節的內容。本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,“三角形的內角和”是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。
仔細分析教材的知識結構,它是分成3個部分來呈現的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內角和的規律,第三部分是運用規律、解決問題。教材這樣編排由發現問題,到驗證問題,再到運用規律,充分體現了知識結構的有序性和強烈的數學建模思想,既符合四年級學生的認知規律,又突出了本課教學的重點。
二、說學情。
1、通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。
2、學生的生活經驗是可利用的教學資源。我在課前了解到,已經有不少學生知道了三角形內角和是180度,但卻不知道怎樣才能得出這個結論,因此學生在這節課上的主要目標是驗證三角形的內角和是180度。
三、說目標。
根據小學數學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特征,將本節課的目標制定為以下幾點:
認知技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發現“三角形內角和等于180度”的規律。
數學思考:在操作實驗中,讓學生感受圖形的轉化過程及數學建模思想,初步培養學生的空間思維觀念。
解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養學生的應用意識。
情感態度:通過各種實驗活動,激發學習興趣,體驗學習成功感,并在教學中,感受生活與數學的密切聯系。
將運用各種實驗方法探究三角形內角和為180度的過程并掌握規律,運用規律解決實際問題確定為本節課的教學重點。而同時學生難以理解不易掌握的探究規律的全過程則是本節課的教學難點。
四、說模式。
“三角形的內角和”一課,知識與技能目標并不難,我認為本節課更重要的是通過自主探索與合作交流使學生經歷知識的形成過程,領悟轉化思想在解決問題中的應用,以及在探索過程中,培養學生實事求是、敢于質疑的科學態度,同時合作交流中,開拓思維、提升能力?;谝陨侠砟?,本節課,我準備引導學生采用自主探究、猜想驗證、合作探究的學習模式。體現“以學生的發展為本”這一教育理念。
五、說方法。
本節課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180度。
因為《課程標準》明確指出:“要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養學生初步的思維能力”。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數學思維方式。
六、說設計。
根據我對教材的把握和對學情的了解,設計了4個環節展開教學。
一、創設情境,發現問題。
小游戲:猜一猜藏在信封后面的是什么三角形。
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創設的不是生活中的情境,而是數學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現出學生在認知上的矛盾,學生用已經學的`三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的這種認知沖突,激發學生的學習興趣,讓學生在疑問與猜想中尋找驗證的方法。)。
教學進入第二環節——引導探究。
二、動手操作,探究規律。
1.介紹內角、內角和,并提出猜想。
師:我們現在研究三角形的三個角,都是它的內角。
師:今天我們就來一起探究《三角形的內角和》。猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
2.確定研究范圍。
師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)。
請你想個辦法吧!
(通過引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數學思想)。
3.建立模型,解決問題。
(一)測量法:
(1)學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。
(3)記錄小組測量結果及討論結果。
實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片。
方法一三角形的形狀每個內角的度數三個內角的。
“三角形的內角和”是人教版小學四年級下冊第五單元第四節的內容?!叭切蔚膬冉呛汀笔侨切蔚囊粋€重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。經過第一學段以及本單元的學習,學生已經具備一定的關于三角形的認識的直接經驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的概念,打下了堅實的基礎。
在教學中李老師充分體現了新課程標準的基本理念:讓學生“人人學有價值的數學”。從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程。善于激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們積極主動地探索,解決數學問題,發現數學規律,獲得數學經驗;李老師善于做好學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態度,促使學生向著預定的目標發展的作用”。
尊敬的各位老師:
你們好!
今天我說課的內容是北師大版小學數學四年級下第二單元“認識圖形”中探索與發現部分的“三角形的內角和”這部分知識。本課指導學生通過直觀操作的方法,探索并發現三角形內角和等于180°。讓學生在實驗活動中,體驗探索的過程和方法。能使學生應用三角形內角和的性質解決一些簡單問題。在認真學習《數學課程標準》,深入鉆研教材,充分了解學生的基礎上,我準備從以下幾方面進行說課。
“認識圖形”是“空間與圖形”的重要內容之一。學生在此之前已經對三角形有了一定的認識。因為教材的小標題為“探索與發現”,所以我主要是通過讓學生在自主探索中學習本課內容。先讓學生明確“內角”的意義,然后引導學生探索三角形內角和等于多少。
結合學生已經有的知識經驗,對于本課我確立了以下幾個教學目標:
1、通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的度數和等于180度。已知三角形兩個角的度數,會求第三個角的度數。
2、滲透猜想--驗證--結論--運用--引申的學習方法,培養學生動手操作和合作交流的能力,培養學生的探究意識。
3、培養學生自主學習、積極探索的好習慣,激發學生學習數學應用數學的興趣,體驗學習數學的快樂。
把教學重難點設定為驗證三角形的內角和是180°,并學會應用。
本堂課我采取了“開放型的探究式”教學模式,運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,使學生全面參與、全員參與、全程參與,真正確立其主體地位。讓學生知道身邊的數學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養學生的發散思維,進一步激發學生學習數學的熱情。在在具體活動中,我讓學生大膽猜想,自主探索三角形的內角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內角的度數和。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式,同時也培養了學生探索能力和創新精神。
本節課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數學思維方式。因此我依據學生的認知規律將教學過程分為以下幾個環節:
(一)復習舊知
由于學生在此之前已經學過了一些關于三角形的一些知識,為了讓學生在學習上有一定的連貫性,我首先設計了一個問題“你對三角形有哪些了解?”,讓學生在復習當中加深對三角形的認識,自然引出“內角”一詞,為后面的探索奠定基礎。
(二)創設情境,激趣導入
教育家葉圣陶先生也曾經說過:“興趣是最好的老師?!币虼?,本節課一開始,我采用故事導入,用兩個大小不同的三角形,創設一個擬人化的對話情境,“大”對“小”說:“你看我個大所以我的內角和一定比你大?!薄靶 眴柕剑骸澳强刹灰欢?,我雖然個小可我的內角和不一定比你小??!”兩人爭論不休,請同學們幫忙解決問題,引入今天所要學習的內容。在這一環節中把問題隱藏在情景之中,將會引起學生迫不及待探索研究的興趣,引發學生的思考,要比較內角和的大小,就要知道各自的內角的度數,從而引導學生開始對“三角形的內角和是多少”進行思索,引發學生探知欲望,也為下一步的教學架橋鋪路。
(三)動手操作,自主探究
由于學生對三角形的內角和已經產生了一定的求知欲,在此我首先設計了一個問題“什么是三角形的內角和?怎樣才能求出三角形的內角和?”從而引起學生的繼續思考。在此問題提出的基礎上,我又分別設計了兩個活動。
活動一:讓每組同學分別畫出大小,形狀不同的若干個三角形,并分別量出三個內角的度數,并求出它們的和。填入記錄表中?;顒佣鹤寣W生分組匯報己的記錄表,闡述發現了什么。
由于本節課是一節發現探索的課程,所以我在此環節進行了這樣的設計。通過這樣的活動,引導學生從“實際操作”到“具體感知”,再從“具體感知”到“抽象概念”,讓學生初步理解三角形的內角和是180度。在量一量、算一算中產生猜想,在探索中發現,在活動中思考,經歷三角形內角和的研究方法,體會活動結果,進一步激發學生的學習興趣,同時也培養了學生與他人合作交流的意識。
(四)驗證結論
學生完成探究活動之后,已經知道了三角形內角和。我做了這樣的提問“除了測量計算出三角形內角和,你還有什么方法可以驗證三角形內角和是180??”學生可以通過:量一量、拼一拼、折一折的方法,發現三角形的內角和是180度。體會驗證三角形內角和的數學思想方法,加深學生對這部分知識的記憶。
(五)鞏固練習
在鞏固練習中,我遵循由易到難的規律,設計了分層訓練。第一層:基本訓練,通過練習明確,會求簡單的三角形內角和。第二層:綜合訓練,通過學生觀察、分析,從紛繁復雜的條件中獲取有價值的信息解決問題。最后一道實踐活動讓學生根據三角形的內角和探索經驗去探索四邊形的內角和,對知識進行遷移,使學生得到了發展。
(六)總結評價
在整個教學設計上謝老師充分體現“以學生發展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證——鞏固內化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現在以下幾點:
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執,到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發學生探究數學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證:學生形成統一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數學探究活動,在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數學的思考融入不同層次的練習之中,很好的發揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數,使學生在圖形變化的過程中掌握知識,培養思維的靈活性,從中發展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數學思維得到不斷的發展。
5、有一定的拓展創新:數學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養學生應用知識的能力,更能培養學生的創新意識和創新精神。
總之,本節課教學活動中謝老師充分體現以下特點:以學生發展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現了層次性,知識技能得于落實和發展。是一節非常成功的課。
版權聲明:此文自動收集于網絡,若有來源錯誤或者侵犯您的合法權益,您可通過郵箱與我們取得聯系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwendaquan/pingyujiyu/26940.html