高三教案是教師根據學校教學要求和學生學習特點,有選擇地安排教學內容和方法,以提高學生的學習效果和應對高考。接下來,我們請教育專家為大家分享一些編寫高三教案的心得和經驗。
結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
一、復習。
二、引入新課。
1.假言推理。
假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。
(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結論就肯定大前提的后件;小前提否定大前提的后件,結論就否定大前提的前件。
(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結論就要肯定大前提的前件;小前提否定大前提的前件,結論就要否定大前提的后件。
2.三段論。
三段論是指由兩個簡單判斷作前提和一個簡單判斷作結論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復出現一次。這三個概念都有專門名稱:結論中的賓詞叫“大詞”,結論中的主詞叫“小詞”,結論不出現的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的'叫“小前提”。
3.關系推理指前提中至少有一個是關系判斷的推理,它是根據關系的邏輯性質進行推演的??煞譃榧冴P系推理和混合關系推理。純關系推理就是前提和結論都是關系判斷的推理,包括對稱性關系推理、反對稱性關系推理、傳遞性關系推理和反傳遞性關系推理。
(1)對稱性關系推理是根據關系的對稱性進行的推理。
(2)反對稱性關系推理是根據關系的反對稱性進行的推理。
(3)傳遞性關系推理是根據關系的傳遞性進行的推理。
(4)反傳遞性關系推理是根據關系的反傳遞性進行的推理。
4.完全歸納推理是這樣一種歸納推理:根據對某類事物的全部個別對象的考察,已知它們都具有某種性質,由此得出結論說:該類事物都具有某種性質。
オネ耆歸納推理可用公式表示如下:
オs1具有(或不具有)性質p。
オs2具有(或不具有)性質p……。
オsn具有(或不具有)性質p。
オ(s1s2……sn是s類的所有個別對象)。
オニ以,所有s都具有(或不具有)性質p。
オタ杉,完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結論所斷定的范圍,并未超出前提所斷定的范圍。所以,結論是由前提必然得出的。應用完全歸納推理,只要遵循以下兩點,那末結論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。
小結:本節課學習了演繹推理的基本模式。
函數是中學數學的重要內容,中學數學對函數的研究大致分成了三個階段。
三角函數是最具代表性的一種基本初等函數。4.8節是第二章《函數》學習的延伸,也是第四章《三角函數》的核心內容,是在前面已經學習過正、余弦函數的圖象、三角函數的有關概念和公式基礎上進行的,其知識和方法將為后續內容的學習打下基礎,有承上啟下的作用。
本節課是數形結合思想方法的良好素材。數形結合是數學研究中的重要思想方法和解題方法。
本節通過對數形結合的進一步認識,可以改進學習方法,增強學習數學的自信心和興趣。另外,三角函數的曲線性質也體現了數學的對稱之美、和諧之美。
因此,本節課在教材中的知識作用和思想地位是相當重要的。
(二)課時安排。
4.8節教材安排為4課時,我計劃用5課時。
(三)目標和重、難點。
1.教學目標。
教學目標的確定,考慮了以下幾點:
(2)本班學生對數學科特別是函數內容的學習有畏難情緒,所以在內容上要降低深難度。
(3)學會方法比獲得知識更重要,本節課著眼于新知識的探索過程與方法,鞏固應用主要放在后面的三節課進行。
由此,我確定了以下三個層面的教學目標:
(3)情感層面:通過運用數形結合思想方法,讓學生體會(數學)問題從抽象到形象的轉化過程,體會數學之美,從而激發學習數學的信心和興趣。
2.重、難點。
由以上教學目標可知,本節重點是師生共同探索,正、余函數的性質,在探索中體會數形結合思想方法。
難點是:函數周期定義、正弦函數的單調區間和對稱性的理解。
為什么這樣確定呢?
因為周期概念是學生第一次接觸,理解上易錯;單調區間從圖上容易看出,但用一個區間形式表示出來,學生感到困難。
如何克服難點呢?
其一,抓住周期函數定義中的關鍵字眼,舉反例說明;。
(3)掌握復數的模的定義及其幾何意義;。
(4)通過學習,培養學生的數形結合的數學思想;。
(5)通過本節內容的學習,培養學生的觀察能力、分析能力,幫助學生逐步形成科學的思維習慣和方法.
教學建議。
一、知識結構。
本節內容首先從物理中所遇到的一些矢量出發引出向量的概念,介紹了向量及其表示法、向量的模、向量的相等、零向量的概念,接著介紹了復數集與復平面內以原點為起點的向量集合之間的一一對應關系,指出了復數的模的定義及其計算公式.
二、重點、難點分析。
本節的重點是復數與復平面的向量的一一對應關系的理解;難點是復數模的概念.復數可以用向量表示,二者的對應關系為什么只能說復數集與以原點為起點的向量的集合一一對應關系,而不能說與復平面內的向量一一對應,對這一點的理解要加以重視.在復數向量的表示中,從復數集與復平面內的點以及以原點為起點的向量之間的一一對應關系是本節教學的難點.復數模的概念是一個難點,首先要理解復數的絕對值與實數絕對值定義的一致性質,其次要理解它的幾何意義是表示向量的長度,也就是復平面上的點到原點的距離.
三、教學建議。
1.在學習新課之前一定要復習舊知識,包括實數的絕對值及幾何意義,復數的有關概念、現行高中物理課本中的有關矢量知識等,特別是對于基礎較差的學生,這一環節不可忽視.
如圖所示,建立復平面以后,復數與復平面內的點形成—一對應關系,而點又與復平面的向量構成—一對應關系.因此,復數集與復平面的以為起點,以為終點的向量集形成—一對應關系.因此,我們常把復數說成點z或說成向量.點、向量是復數的另外兩種表示形式,它們都是復數的幾何表示.
相等的向量對應的是同一個復數,復平面內與向量相等的向量有無窮多個,所以復數集不能與復平面上所有的向量相成—一對應關系.復數集只能與復平面上以原點為起點的向量集合構成—一對應關系.
2.
這種對應關系的建立,為我們用解析幾何方法解決復數問題,或用復數方法解決幾何問題創造了條件.
3.向量的模,又叫向量的絕對值,也就是其有向線段的長度.它的計算公式是,當實部為零時,根據上面復數的模的公式與以前關于實數絕對值及算術平方根的規定一致.這些內容必須使學生在理解的基礎上牢固地掌握.
4.講解教材第182頁上例2的第(1)小題建議.在講解教材第182頁上例2的第(1)小題時.如果結合提問的圖形,可以幫助學生正確理解教材中的“圓”是指曲線而不是指圓面(曲線所包圍的平面部分).對于倒2的第(2)小題的圖形,畫圖時周界(兩個同心圓)都應畫成虛線.
5.講解復數的模.講復數的模的定義和計算公式時,要注意與向量的有關知識聯系,結合復數與復平面內以原點為起點,以復數所對應的點為終點的向量之間的一一對應關系,使學生在理解的基礎上記憶。向量的模,又叫做向量的絕對值,也就是有向線段oz的長度.它也叫做復數的?;蚪^對值.
§3.1.1數列、數列的通項公式目的:要求學生理解數列的概念及其幾何表示,理解什么叫數列的通項公式,給出一些數列能夠寫出其通項公式,已知通項公式能夠求數列的項。
重點:1數列的概念。按一定次序排列的一列數叫做數列。數列中的每一個數叫做數列的項,數列的第n項an叫做數列的通項(或一般項)。由數列定義知:數列中的數是有序的,數列中的數可以重復出現,這與數集中的數的無序性、互異性是不同的。
3.4.-1的正整數次冪:-1,1,-1,1,…。
5.無窮多個數排成一列數:1,1,1,1,…。
二、提出課題:數列。
1.數列的定義:按一定次序排列的一列數(數列的有序性)。
2.名稱:項,序號,一般公式,表示法。
3.通項公式:與之間的函數關系式如數列1:數列2:數列4:
4.分類:遞增數列、遞減數列;常數列;擺動數列;有窮數列、無窮數列。
5.實質:從映射、函數的觀點看,數列可以看作是一個定義域為正整數集n-(或它的有限子集{1,2,…,n})的函數,當自變量從小到大依次取值時對應的一列函數值,通項公式即相應的函數解析式。
6.用圖象表示:—是一群孤立的點例一(p111例一略)。
三、關于數列的通項公式1.不是每一個數列都能寫出其通項公式(如數列3)。
2.數列的通項公式不唯一如:數列4可寫成和。
3.已知通項公式可寫出數列的任一項,因此通項公式十分重要例二(p111例二)略。
五、小結:1.數列的有關概念2.觀察法求數列的通項公式。
六、作業:練習p112習題3.1(p114)1、2。
2.寫出下面數列的一個通項公式,使它的前4項分別是下列各數:(1)1、、、;(2)、、、;(3)、、、;(4)、、、。
3.求數列1,2,2,4,3,8,4,16,5,…的一個通項公式。
6.在數列{an}中a1=2,a17=66,通項公式或序號n的一次函數,求通項公式。
7.設函數(),數列{an}滿足(1)求數列{an}的通項公式;(2)判斷數列{an}的單調性。
7.(1)an=(2)。
復習:
1、(課本p28a13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數是;
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數是;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數是;
探究新知(復習教材p14~p25,找出疑惑之處)。
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
應用示例。
例2、7位同學站成一排,分別求出符合下列要求的不同排法的種數、
(1)甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
反饋練習。
當堂檢測。
1、某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目、如果將這兩個節目插入原節目單中,那么不同插法的種數為()。
a、42b、30c、20d、12。
課后作業。
(3)使學生初步了解有限集、無限集、空集的意義。
重點難點】。
教學重點:集合的基本概念及表示方法。
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合。
授課類型:新授課。
課時安排:1課時。
教具:多媒體、實物投影儀。
內容分析】。
1.板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現方式來編排板書。即體現系統性、程序性、概括性、指導性、啟發性、創造性的原則;(原則性)。
2.使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。(靈活性)。
2結合的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期。
3會用代數方法求等函數的周期。
4理解周期性的幾何意義。
周期函數的概念,周期的求解。
1、是周期函數是指對定義域中所有都有。
即應是恒等式。
2、周期函數一定會有周期,但不一定存在最小正周期。
例1、若鐘擺的高度與時間之間的函數關系如圖所示。
(1)求該函數的周期;
(2)求時鐘擺的高度。
例2、求下列函數的周期。
(1)(2)。
總結:(1)函數(其中均為常數,且。
的周期t=。
(2)函數(其中均為常數,且。
的周期t=。
例3、求證:的周期為。
例4、(1)研究和函數的圖象,分析其周期性。
(2)求證:的周期為(其中均為常數,
且
總結:函數(其中均為常數,且。
的周期t=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數。
課后思考:能否利用單位圓作函數的圖象。
六、作業:
七、自主體驗與運用。
1、函數的周期為()。
a、b、c、d、
2、函數的`最小正周期是()。
a、b、c、d、
3、函數的最小正周期是()。
a、b、c、d、
4、函數的周期是()。
a、b、c、d、
5、設是定義域為r,最小正周期為的函數,
若,則的值等于()。
a、1b、c、0d、
6、函數的最小正周期是,則。
7、已知函數的最小正周期不大于2,則正整數。
的最小值是。
8、求函數的最小正周期為t,且,則正整數。
的最大值是。
9、已知函數是周期為6的奇函數,且則。
10、若函數,則。
11、用周期的定義分析的周期。
12、已知函數,如果使的周期在內,求。
正整數的值。
13、一機械振動中,某質子離開平衡位置的位移與時間之間的。
函數關系如圖所示:
(1)求該函數的周期;
(2)求時,該質點離開平衡位置的位移。
14、已知是定義在r上的函數,且對任意有。
成立,
(1)證明:是周期函數;
(2)若求的值。
教學重難點。
教學過程。
【知識點精講】。
1、數列:按照一定次序排列的一列數(與順序有關)。
2、通項公式:數列的第n項an與n之間的函數關系用一個公式來表示an=f(n)。
(通項公式不)。
3、數列的表示:。
(1)列舉法:如1,3,5,7,9……;。
(2)圖解法:由(n,an)點構成;。
(3)解析法:用通項公式表示,如an=2n+1。
5、任意數列{an}的前n項和的性質。
引出數形結合思想方法,強調其含義和重要性,告訴學生,本節課將利用數形結合方法來研究,會使學習變得輕松有趣。
采用這樣的引入方法,目的是打消學生對函數學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。
(二)新知探索主要環節,分為兩個部分。
教學過程如下:
第一部分————師生共同研究得出正弦函數的性質。
1.定義域、值域2.周期性。
3.單調性(重難點內容)。
為了突出重點、克服難點,采用以下手段和方法:
(1)利用多媒體動態演示函數性質,充分體現數形結合的重要作用;。
(2)以層層深入,環環相扣的課堂提問,啟發學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調動起來。
(3)單調區間的探索過程是:
先在靠近原點的一個單調周期內找出正弦函數的一個增區間,由此表示出所有的增區間,體現從特殊到一般的知識認識過程。
**教師結合圖象幫助學生理解并強調“距離”(“長度”)是周期的多少倍。
為什么要這樣強調呢?
因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數的相關性質。
4.對稱性。
設計意圖:
(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現了從一般到特殊的知識再現過程。
(2)從正弦函數的對稱性看到了數學的對稱之美、和諧之美,體現了數學的審美功能。
5.最值點和零值點。
有了對稱性的理解,容易得出此性質。
第二部分————學習任務轉移給學生。
設計意圖:
(3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。
(三)鞏固練習。
補充和選作題體現了課堂要求的差異性。
(四)結課。
數學教學是數學活動的教學,是師生交往、互動、共同發展的過程。有效的數學教學應當從學生的生活經驗和已有的知識水平出發,向他們提供充分地從事數學活動的機會,在活動中激發學生的學習潛能,促使學生在自主探索與合作交流的過程中真正理解和掌握基本的數學知識、技能和思想方法。提高解決問題的能力,并進一步使學生在意志力、自信心、理性精神等情感、態度方面都得到良好的發展。
二.對教學內容的認識。
1.教材的地位和作用。
本節課是在學生學習過“一百萬有多大”之后,繼續研究日常生活中所存在的較小的數,進一步發展學生的數感,并在學完負整數指數冪的運算性質的基礎上,嘗試用科學記數法來表示百萬分之一等較小的數。學生具備良好的數感,不僅對于其正確理解數據所要表達的信息具有重要意義,而且對于發展學生的統計觀念也具有重要的價值。
2.教材處理。
基于設計理念,我在尊重教材的基礎上,適時添加了“銀河系的直徑”這一問題,以向學生滲透辯證的研究問題的思想方法,幫助學生正確認識百萬分之一。
通過本節課的教學,我力爭達到以下教學目標:
3.教學目標。
(1)知識技能:
借助自身熟悉的事物,從不同角度來感受百萬分之一,發展學生的數感。能運用科學記數法來表示百萬分之一等較小的數。
(2)數學思考:
通過對較小的數的問題的學習,尋求科學的記數方法。
(3)解決問題:
能解決與科學記數有關的實際問題。
(4)情感、態度、價值觀:
使學生體會科學記數法的科學性和辯證的研究問題的思想方法。培養學生的合作交流意識與探究精神。
4.教學重點與難點。
根據教學目標,我確定本節課的重點、難點如下:
重點:對較小數據的信息做合理的解釋和推斷,會用科學記數法來表示絕對值較小的數。
難點:感受較小的數,發展數感。
三.教法、學法與教學手段。
1.教法、學法:
本節課的教學對象是七年級的學生,這一年級的學生對于周圍世界和社會環境中的實際問題具有越來越強烈的興趣。他們對于日常生活中一些常見的數據都想嘗試著來加以分析和說明,但又缺乏必要的感知較大數據或較小數據的方法及感知這些數據的活動經驗。
因此根據本節課的教學目標、教學內容,及學生的認知特點,教學上以“問題情境——設疑誘導——引導發現——合作交流——形成結論和認識”為主線,采用“引導探究式”的教學方法。學生將主要采用“動手實踐——自主探索——合作交流”的學習方法,使學生在直觀情境的觀察和自主的實踐活動中獲取知識,并通過合作交流來深化對知識的理解和認識。
2.教學手段:
1.采用現代化的教學手段——多媒體教學,能直觀、生動地反映問題情境,充分調動學生學習的積極性。
2.以常見的生活物品為直觀教具,豐富了學生感知認識對象的途徑,使學生對百萬分之一的認識更貼近生活。
四.教學過程。
(一).復習舊知,鋪墊新知。
問題1:光的速度為300000km/s。
問題2:地球的半徑約為6400km。
問題3:中國的人口約為1300000000人。
(十).教學設計說明。
本節課我以貼近學生生活的數據及問題背景為依托,使學生學會用數學的方法來認識百萬分之一,豐富了學生對數學的認識,提高了學生應用數學的能力,并為培養學生的終身學習奠定了基礎。在授課時相信會有一些預見不到的情況,我將在課堂上根據學生的實際情況做相應的處理。
本節課是xxx大版高中數學必修x中第x章第x節的內容。主要是二元均值不等式。它是在系統地學習了不等關系和不等式性質,掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續的學習奠定基礎。要進一步了解不等式的性質及運用,研究最值問題,此時基本不等式是必不可缺的?;静坏仁皆谥R體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,因此它也是對學生進行情感價值觀教育的優良素材,所以基本不等式應重點研究。
教學中注意用新課程理念處理教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探究、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。
就知識的應用價值上來看,基本不等式是從大量數學問題和現實問題中抽象出來的一個模型,在公式推導中所蘊涵的`數學思想方法如數形結合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應用;另外,在解決函數最值問題中,基本不等式也起著重要的作用。
就內容的人文價值上來看,基本不等式的探究與推導需要學生觀察、分析、歸納,有助于培養學生創新思維和探索精神,是培養學生數形結合意識和提高數學能力的良好載體。
教學目標:了解基本不等式的幾何背景,能在教師的引導下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術強化數形結合的思想方法。
在教師的逐步引導下,能從較為熟悉的幾何圖形中抽象出基本不等式,實現對基本不等式幾何背景的初步了解。
學生已經學習了不等式的基本性質,可以運用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數證明。
進一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強學生數形結合的意識。
在認知上,學生已經掌握了不等式的基本性質,并能夠根據不等式的性質進行數、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導,學生并不能自覺地通過已有的知識、記憶去發展和構建幾何圖形中的相等或不等關系,這就需要教師逐步地引導,并選用合理的手段去激活學生的思維,增強數形結合的思想意識。
另外,盡可能引領學生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學生往往容易忽視基本不等式,使用的前提條件a,b0同時又要注意區別基本不等式的使用條件為,因此,在教學過程中,借助例題落實學生領會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進一步強化和應用,將放于下一個課時的內容。
為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學中需要有具體的圖形來幫助學生理解基本不等式的生成,感受數形結合的數學思想,所以,借助于幾何畫板軟件來加強幾何直觀十分必要,同時演示動畫幫助學生驗證基本不等式等號取到的情況,并用電腦3d技術展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強教學效果。
教學過程的設計從實際的問題情境出發,以基本不等式的幾何背景為著手點,以探究活動為主線,探求基本不等式的結構形式,并進一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應用價值。數形結合的思想貫穿于整個教學過程,并時刻體現在教學活動之中。
本節課通過6個教學環節,強調過程教學,在教師的引導下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認識基本不等式,并理解其幾何背景。課堂教學以學生為主體,基本不等式為主線,在學生原有的認知基本上,充分展示基本不等式這一知識的發生、發展及再創造的過程。
同時,以多媒體課件作為教學輔助手段,賦予學生直觀感受,便于觀察,從而把一個生疏的、內在的知識,變成一個可認知的、可交流的對象,提高了課堂效率。
會用基本不等式解決簡單的最大(?。┲祮栴}并注意等號取到的條件。在教學過程中始終圍繞教學目標進行評價,師生互動,在教學過程的不同環節中及時獲取教學反饋信息,以學生為主體,及時調節教學措施,完成教學目標,從而達到較為理想的教學效果。
【教學目標】:
(1)知識目標:
通過實例,了解簡單的邏輯聯結詞“且”、“或”的含義;
(2)過程與方法目標:
(3)情感與能力目標:
在知識學習的基礎上,培養學生簡單推理的技能。
【教學重點】:
通過數學實例,了解邏輯聯結詞“或”、“且”的含義,使學生能正確地表述相關數學內容。
【教學難點】:
簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。
【教學過程設計】:
教學環節教學活動設計意圖。
情境引入問題:
下列三個命題間有什么關系?
(1)12能被3整除;
(2)12能被4整除;
知識建構歸納總結:
一般地,用邏輯聯結詞“且”把命題p和命題q聯結起來,就得到一個新命題,
記作,讀作“p且q”。
引導學生通過通過一些數學實例分析,概括出一般特征。
1、引導學生閱讀教科書上的例1中每組命題p,q,讓學生嘗試寫出命題,判斷真假,糾正可能出現的邏輯錯誤。學習使用邏輯聯結詞“且”聯結兩個命題,根據“且”的含義判斷邏輯聯結詞“且”聯結成的新命題的真假。
2、引導學生閱讀教科書上的例2中每個命題,讓學生嘗試改寫命題,判斷真假,糾正可能出現的邏輯錯誤。
歸納總結:
當p,q都是真命題時,是真命題,當p,q兩個命題中有一個是假命題時,是假命題,
學習使用邏輯聯結詞“且”改寫一些命題,根據“且”的含義判斷原先命題的真假。
引導學生通過通過一些數學實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規律。
20__年是江蘇高考進入新課程的第三年,我們應當在體現新課程多樣性、選擇性和探究性的特點的同時,結合__、__年高考數學試卷分析,在夯實基礎的前提下讓學生全面而有個性的發展。
根據20__屆高三的特殊情況制定的我市高中數學教學進度建議,望各校能按照這個進度制定詳細的學科教學進度計劃,突出重點,在有效復習時間大大縮短的前提下,確保高三復習工作的順利完成。
一、教學進度。
理科復習順序。
文科復習順序。
測試建議。
新授坐標系和參數方程;復習集合(含常用邏輯用語)、函數的概念與基本初等函數、導數及其應用(含定積分)、三角函數(含三角恒等變換、解三角形)、平面向量、數列、不等式、平面解析幾何(含圓錐曲線方程)。
立體幾何初步(含空間向量與立體幾何)、推理與證明(含數學歸納法)、算法初步、概率統計、數系的擴充與復數的引入。
計數原理、概率。
矩陣與變換、坐標系與參數方程(或不等式選講、幾何證明選講)。
復習集合與常用邏輯用語、函數的概念與基本初等函數、導數及其應用、三角函數(含三角恒等變換、解三角形)、平面向量、數列、不等式、平面解析幾何(含圓錐曲線方程)。
立體幾何初步、推理與證明、數系的擴充與復數的引入。
算法初步、概率統計。
9月底進行高三第一次統測,主要目的是摸底,范圍均為全部必修。
1月中旬進行高三第二次統測,范圍為全部必修和選修內容。
3月底進行高三第三次統測,范圍為全部必修和選修內容。
計劃到3月底第一輪復習全部結束。
專題復習、專題訓練、
綜合訓練、模擬訓練。
充分利用其它市等信息試卷模擬,迎接高考。
說明:統測全部內容的目的有二,一是各??筛鶕拘嶋H情況確定教學進度,不受統測進度的影響;二是有利于老師和學生準確了解高考,清楚把握難度,盡快適應高考。
二、復習策略。
1、第一輪復習的基礎性。第一輪復習是整個數學復習的基礎工程,其主要任務是在老師的指導下,讓學生自己對基礎知識、基本技能進行梳理,使之達到系統化、結構化、完整化;在老師的組織下通過對基礎題的系統訓練和規范訓練,使學生準確理解每一個概念,能從不同角度把握所學的每一個知識點,及知識點所有可能涉及到的題型,熟練掌握各種典型問題的通性、通法。第一輪復習務必要做到細而實,統籌計劃。切不可因輕重不分而出現“前緊后松,前松后緊”的現象,也不可因趕進度而出現“點到為止,草草了事”的現象,只有真正實現低起點、小坡度、嚴要求,真正改變教師一包到底,實施學生自主學習,才能達到夯實“雙基”的目的。
2、第一輪復習的全面性。第一輪復習必須面向全體學生。降低復習起點,在夯實“雙基”的前提下,注重培養學生的能力,包括:空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。提高學生對實際問題的閱讀理解、思考判斷能力;以及數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。復習教學要充分考慮到課標的教學要求和本校、本班學生的實際水平,堅決反對脫離學生實際的任意拔高和只抓幾個“優生”放棄大部分“差生”的不良做法,不做或少做無效勞動,同時加大分層教學和個別指導的力度,狠抓復習的針對性、實效性,提高復習效果。
3、第一輪復習的針對性。06年、07年、__年的江蘇高考試題,__年上海、廣東、寧夏、海南的新課程試題,已經在暗示我們__年江蘇高考數學考什么、怎么考,提醒我們要在將基礎問題學實學活的同時,重視數學思想方法的復習。數形結合、函數方程、等價化歸、分類討論等數學思想依然是新課程數學高考的重點、熱點、難點,因此一定要把復習內容中反映出來的數學思想方法的教學體現在第一輪復習的全過程中,使學生真證領悟到如何靈活運用數學思想方法解題。必須讓學生明白復習的最終目標是新題會解,而不能單單立足于陳題的熟練。
4、第一輪復習的科學性。要強化運算能力、表達能力和閱讀理解能力的訓練,復習時要有意識地提供給學生自主思考的時間和空間,安排時間讓學生定期、定時、定量地進行完整的、規范的解題訓練。對解題過程和書面表達提出明確具體的要求,在一開始就注重培養學生良好的解題習慣、考試習慣,從而提高解題的成功率和得分率。同時要加強處理信息與數據、和尋求設計合理。簡捷的運算途徑萬面的訓練,提高閱讀理解的水平和運算技能。盡管命題組一再強調“多考一點想的,少考一點算的”,事實上許多學生仍然因運算量大而無法完成。因此對運算技能的培養必須重視和加強。另外,網上閱卷對解題規范、書寫輕重、表述完整等的新的要求必須人人清楚。
5、第一輪復習的學習性。在認真研究、學__年高考試題江蘇卷以及全國卷、上海、廣東、寧夏、海南的新課程卷,以及考試中心對各地__年高考試題的評價報告的同時,針對新課程的《數學課程標準的教學要求》,進一步加強對數學解題教學的學習研究,提高自身教學水平。我們既反對題海戰術,又提倡做一定數量的有代表性的基礎題、綜合題和應用題。只有通過做一定量的題,才能讓學生牢固掌握基本題型的通性、通法,以及其中的數學思想方法,才能提高學生尋求最佳解法、解題反思、歸納總結的能力,才能探索解各類數學題的一般規律,積累解題經驗,進而提升獨立解題的能力。
6、第一輪復習的研究性。要進一步加強對知識復習課和試卷講評課的研究。各校的集體備課要多重實效少重形式,教學案一體化要保證質量控制數量,嚴格責任制、把關制。每周要通過獨立作業等形式安排一次課內質量檢測,主要檢查本周內復習教學情況,而不是與復習內容無關的綜合檢測。檢測題的難度要適合本班中下等生的水平,面向全體學生,有利于提高每個學生學習數學的興趣。檢測要注意滾動發展,防止前學后忘,對于每次檢測,要做到定時收,及時改,改必評,錯必糾,充分發揮講評課的有效功能。講評時切忌不做任何分析的對答案,講評要專題化。要重點突出,以點觸面,舉一反三。二要進一步加強對復習資料的研究。我們提倡認真選用好復習資料,堅持教師擁有多種資料,學生用一本資料。在實際教學中,教師可以根據學生的實際水平對多種資料進行有針對性的選擇、改編和重組,使之更符合本?;虮景鄬W生的實際水平,從而達到提高復習的針對性和復習效率的目的。大力提倡各校使用教學案一體化,要求凡使用教學案一體化的學校務必實行嚴格的分工、研討、審核制度,同時重視經過個人精加工的二次備課,以確保教學案的針對性、科學性和實用性,堅決反對使用僅由個人盲目拼湊的(只有分工,沒有研討、審核、二次備課)錯誤百出的教學案。凡是給學生訓練的題,教師都必須至少親自做一遍,只有這樣才能真正做到對學生解題的有針對性的訓練和指導。
7、第二輪復習的專題性。要強化綜合訓練,上好專題訓練課。要突出如何運用數學思想萬法分析、解決問題;要聯系社會、生活實際設置一些新穎情景題,強化學生在閱讀理解、審題、探索思路等萬面的訓練;要多證學生獨立思考,充分重視審顴的科學性、運算的準確性、解題的規范性、表述的精確性、以及解題速度的提高等,堅決克服懂而不會,全而不對,對而不全,全而不快的現象。同時要注意心理疏導,確保在各種意想不到的情況下有——個良好的心態;注意應試技巧的訓練,確保在最短的時間內以最優的.萬法拿到所有可能拿到的分數,使學生在高考中,充分發揮自已的水平,取得理想的成績。
8、第二輪復習的針對性。為了更好地提高學生的解題能力,適應新課程高考的新題型,二輪復習務必加強計劃性。開什么樣的專題,開那些專題;練什么樣的模擬卷,練幾份模擬卷,都必須在進行深入細致的調研的前提下科學的決策。另外,還需強調的是為了確保第三次統測時,一輪復習全部結束,各校的理科必須增加課時,加快進度,而文科必須控制進度,按計劃復習。
1、系統構建知識網絡,準確把握教學要求。要按《數學課程標準和教學要求》理解掌握好每一個知識點,決不能顧此失彼,無端忽視自以為簡單或不重要的知識點,直接導致應缺少某個必要的知識而失分;也不能無端的拓寬和加深,導致由于過多地無用功而影響教學成績。
2、自始至終培養能力,夯實基礎開拓視野。要不斷提高學生的運算能力、空間想象能力、邏輯思維能力,以及運用知識解決實際問題的實踐能力和創新意識。以不變應萬變,而不應該以獲得高考信息為借口,猜題、押題、盲目訓練,導致學生對基本題型、通性通法的忽視。如閱讀理解題、運算題、空間想象題、分類討論題等。應按照新課程理念的要求,把學生推到問題的前沿。盡可能讓他們主動的多角度的去分析、去探索、去發現、去研究、去創新,缺少反思的盲目訓練絕不可能在高考中取得好成績。
(1)對于處理問題的重要的數學思想方法,如函數與方程、變換與轉化、分類與歸納、數形的結合與分離、定常與變化的對立與統一等思想觀點和方法,高考將通過具體問題,測試考生掌握的程度。
(2)對思維能力的考查要求,與試題的解答過程結合起來就是:能正確領會題意,明確解題的目標與方向,會采用適當的步驟,合乎邏輯地進行推理和演算,實現解題目標并加以正確表述。今年的試題之所以難,思維能力的要求高是一個重要原因。
(3)對運算能力的考查要求,數值計算、字符運算,以及各種式子的變換運算,都是重要的考查內容。應懂得恰當地應用估算、圖算、近似計算和精確計算進行解題。今后的試題對運算能力和估算能力的要求會比較高。
(4)對空間想像能力的考查要求,強調的是對圖形的認識、理解和應用,既會用圖形表現空間形體,又會由圖形想像出直觀的形象;既會觀察、分析各種幾何要素(點、線、面、體)的相互位置關系,又能對圖形進行變換分解和組合。為了增強和發展空間想像能力,必須強化空間觀念,培養直覺思維的習慣,把抽象思維與形象思維結合起來。
3、加強教學模式研究,形成有效教學手段。個人認為,抓基礎落實,應從以下三個方面入手,一是回歸課本、教材,理清知識本原,構建知識網絡;二是以課本習題為素材,深入淺出、舉一反三地加以推敲、延伸和變形,形成典型例題,借助啟發式講解、自主式訓練幫助學生融會貫通;三是精心選擇習題,悉心設置問題,充分挖掘題目的內涵和外延,引導學生變題為類,便所選習題的功能得到最大發揮,同時著重抓好應變能力的培養和解題規范化訓練。在第一輪復習中要對每一章數學基礎知識,作幾次系統的回顧與總結,對所學內容能按類別形成知識網絡,清理考點,清理錯解,清理題型,消理方法。每一單元選5個左右的典型問題進行評點與反思。專題復習課、試卷講評課是高三數學復習課中的兩種主要教學模式,如何改進兩課教學模式,促進課堂教學效益的提高,是永遠不變的話題。首先要加強集體備課,通過集體智慧的凝聚,實現優勢互補、資源共享。在高中擴招、師資大量流失的今天,尤其顯得必要,可以說__年、__年之所以能取得較好的成績,其關鍵在于各校在這一點上做得實,希望繼續保持和發揚;其次是在使用教學案一體化的同時,重視針對所帶學生實際情況的個人備課,雖然所有學生都用同一張試卷考數學,但各種不同選課的學生學數學的基礎和基本素質相差太大,使我們不得不準對學生的實際情況實施有效教學,因此個人備課馬虎不得;最后要在教學過程中不斷地、自覺地研究考情、學情、教材、大綱,針對學生的情況變化、教學設備的變化等,制定確實可行的教學方案,并隨時進行修訂、完善,細節決定成敗,只有把握好教學的每——個環節,才能真正提高教學效益。我們強調:注重視知識梳理、網絡構建的同時,不能忽視方法教學和能力培養,要求在復習重點知識時適時滲透數學思想方法,在專題復習時提煉數學思想方法,在綜合訓練是鞏固和深化數學思想方法,用細水長流的方式將閱讀理解能力和應用意識融入平常教學的每一環節,使通性通法的運用在數學思想方法的指導下變得更加靈活、自如,使學生能自覺地用數學眼光去觀察、去分析生產、生活和其他學科的一些具體問題,真正實現創新意識和數學素養的提高。復習中務必注意選擇習題,做題要重質量,不要貪多。要選擇反映數學學科特點的題目,如存在性,唯一性,充要條件,不變量,參數問題,恒成立的立向題,軌跡問題等,要針對學生的薄弱環節設制習題,不做偏題,怪題,不要覺得學生做不好的題就一定要考,犯疑心病,要重思想、重方法,務必做到每題弄懂弄透。
4、認真研究高考試卷,準確把握高考導向。通過新課程理念的學習,實現教學觀念和教學思想的真正轉變,即變只懂書本內容、只會解題的單一型教學目標為重實踐能力和創新精神的綜合素質教育目標;變只重知識積累、只重學習結果的質量體系為反映學生全面素質的綜合學習評價;變陳舊、落后、傳統的教學手段為先進、快捷、激趣式的現代教育技術方式。通過各項工作的有序進行,實現教學目標和教學效果的真正統一,即教學內容的重難點和高考內容重難點的真正統一;知識點的難易度和高考難易度的真正統一;教學能力要求和高考能力要求的真正統一,爭創高考成績的再輝煌。創新意識和創造能力是理性思維的高層次表現。在數學學習和研究過程中,知識的遷移、組合、融匯的程度越高,展示能力的區域就越寬泛,顯現出的創造意識也就越強。
5、加強新增內容研究,注意新的考查點。新課程在過去的基礎上增加了“簡易邏輯”、“平面向量”、“導數”、“概率統計”等內容。這些內容是切合時代需要和數學發展的。增加這些內容,是先進教育理念指導的結果。高考既是選拔性考試可也是對中學教育的一種評價,這些極富生命力的課程內容必須考查。新增內容的相關試題在試卷中起點提高,難度加大,并形成了以向量、導數、概率為紐帶的新的知識網絡交匯點。但是,對新內容的命題考查并不是一步到位,而是采取逐步遞進、最終完善的方法,在20__、__年的高考命題中,新增內容的相關試題所占的分值占有較大份額。新增內容在高考中絕對不是數學知識的簡單復制,而是趨向于能力的考查。因此要特別關注:
(1)導數與函數的結合。函數是高中數學的主干內容,導數作為新課程中160分的重要內容之一,為研究函數提供了有力的工具,便函數的釣單調性、極值、最值等問題都得到了有效而較為徹底的解決。因此,用導數方法研究函數問題是數學學習的必然,也是高考命題的方向。
(2)平面向量與解析幾何的結合。平面向量與解析幾何都涉及坐標表示和坐標運算,坐標法可以將二者有機結合起來,高考命題必然會抓住這一契機。
(4)概率統計與排列組合的結合。概率與統計是近代數學的重要分支,在現實中應用廣泛,同時概率統計與排列組合又有著緊密的聯系,將它們有機結合應該是新課程高考的熱點和亮點,但我們注意到概率及計數原理均為40分的學習內容,160分中的概率是非常簡單的,所以這一塊的高考難度不會大。
6、高考求新求變求穩,訓練速度規范質量。立足教材、重視基礎、突出知識主干、不回避知識重點是歷年高考命題的不變之策,20__年如此,20__年也不例外,傳統題目還將占大多數,創新問題占少數,減少運算量,增大思維量,是新課程標準的既定目標要求。個人認為__年題目的總體難易程度,應比20__年易一點但也不會太易,填充題側重于雙基的考查,其中有一些小技巧,注意合情思維(猜想、真覺等)、數形結合、化歸與分類等思想方法的應用,也將出現定量分析與定性分析型的問題;通過計算與分析推理解決的問題是定量分析問題,憑直覺進行觀察分析解決的問題是定性分析問題,會出現開放題與小綜合題,主要表現在多項選擇、試驗發現、歸納猜想等問題中。解答題的考查空間較寬廣,不僅形式靈活多樣,而且內涵極其深刻,既可在多個層次上考查基本知識、基本技能和基本思想方法,又能深入地考查數學能力和數學素質。在設問方式上,可能出現串連式小步設問模式,其間會有遞推條件型的開放性題目與材料分析型的開放性題目;在知識點的考查上,要加強知識點之間的綜合聯系,包括橫向的與縱向的聯系,比如立幾與函數、解幾與函數、數列與函數、向量與解幾、三角與向量、不等式與函數等知識網絡間的聯系;在綜合能力的考查上,除繼續注重數學觀察能力、數學記憶力、數學語言的轉換能力外,還要增強探索試驗能力、歸納概括能力及非智力因素的考查。
在后期的復習中,首先可考慮選幾套模擬卷,只審題,不做題。題目本身是“怎樣解這道題”的信息源,題目中的信息往往通過語言文字,公式符號,以及它們之間的關系間接告訴你,所以審題一定要逐字逐句看清楚,力求從語法結構,邏輯關系,數學含義等方面真正看懂題意,弄清條件是什么(告訴你從何處入手)?結論是什么(告訴你向何方前進)?它們分別與哪些知識有聯系?從自己已掌握的知識方法模塊中提取與之相適應的解題方法,通過已建立的思維鏈,把知識方法輸入大腦,并在大腦中進行整合,找到解題途徑,并留心易錯點,想出解案。只有細致的審題才能從題目本身獲得盡可能多的信息,這一步,開始不要怕“慢”,這是訓練思維敏捷性必經的一步。其次做5套左右的高考模擬題,最好做幾套近兩年中上海、山東、廣東、寧夏、海南以及南通、南京等地區的高考仿真題,不在于能得多少分;而在于真實感受一下“新課程高考”的難度,熟悉一下解答題評卷規則,以改進自已的書面表述習慣,進而了解在哪些問題上是得分的強項,哪些是得分的弱項。另外,網上閱卷所反映的解題規范、字跡工整方面導致的失分仍應在平常的教學中給予足夠的重視。
20__年高考復習已經拉開帷幕,希望我們的設想和建議能給各校的復習帶來一些幫助,在20__年高考中有所收獲,讓我們大家共同努力,辛勤的汗水定能澆灌出豐碩的果實。預祝20__年高考再創輝煌!
教學目標:
1、知識與技能:
1)了解導數概念的實際背景;
2)理解導數的概念、掌握簡單函數導數符號表示和基本導數求解方法;
3)理解導數的幾何意義;
4)能進行簡單的導數四則運算。
2、過程與方法:
先理解導數概念背景,培養觀察問題的能力;再掌握定義和幾何意義,培養轉化問題的能力;最后求切線方程及運算,培養解決問題的能力。
3、情態及價值觀;
讓學生感受數學與生活之間的聯系,體會數學的美,激發學生學習興趣與主動性。
教學重點:
1、導數的求解方法和過程;
2、導數公式及運算法則的熟練運用。
教學難點:
1、導數概念及其幾何意義的理解;
2、數形結合思想的靈活運用。
教學課型:復習課(高三一輪)。
教學課時:約1課時。
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析。
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
二、目標分析。
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標。
(1)知識與技能。
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法。
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀。
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點。
本節課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析。
(一)教法。
基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法。
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
四、教學過程分析。
(一)教學過程設計。
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。
數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過過程.
(3)自我嘗試,初步應用。
有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:
(1)通過本節課的學習,你學到了哪些知識?
(2)通過本節課的學習,你的體驗是什么?
(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計。
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.
近年來的高考數學試題逐步做到科學化、規范化,堅持了穩中求改、穩中創新的原則??荚囶}不但堅持了考查全面,比例適當,布局合理的特點,也突出體現了變知識立意為能力立意這一舉措。更加注重考查考生進入高校學習所需的基本素養,這些問題應引起我們在教學中的關注和重視。
20__年是湖南省新課標命題的第二年,數學試卷充分發揮數學作為基礎學科的作用,既重視考查中學數學基礎知識的掌握程度,又注意考查進入高校繼續學習的潛能。在前二年命題工作的基礎上做到了總體保持穩定,深化能力立意,積極改革創新,兼顧了數學基礎、思想方法、思維、應用和潛能等多方面的考查,融入課程改革的理念,拓寬題材,選材多樣化,寬角度、多視點地考查數學素養,多層次地考查思想能力,充分體現出湖南卷的特色:
1、試題題型平穩突出對主干知識的考查重視對新增內容的考查。
2、充分考慮文、理科考生的思維水平與不同的學習要求,體現出良好的層次性。
3、重視對數學思想方法的考查。
4、深化能力立意,考查考生的學習潛能。
5、重視基礎,以教材為本。
6、重視應用題設計,考查考生數學應用意識。
二、教學計劃與要求。
新課已授完,高三將進入全面復習階段,全年復習分兩輪進行。
第一輪為系統復習(第一學期),此輪要求突出知識結構,扎實打好基礎知識,全面落實考點,要做到每個知識點,方法點,能力點無一遺漏。在此基礎上,注意各部分知識點在各自發展過程中的縱向聯系,以及各個部分之間的橫向聯系,理清脈絡,抓住知識主干,構建知識網絡。在教學中重點抓好各中通性、通法以及常規方法的復習,是學生形成一些最基本的數學意識,掌握一些最基本的數學方法。同時有意識進行一定的綜合訓練,先小綜合再大綜合,逐步提高學生解題能力。
三、具體方法措施。
1、認真學習《考試說明》,研究高考試題,提高復習課的效率。
《考試說明》是命題的依據,復習的依據、高考試題是《考試說明》的具體體現。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認識《考試說明》上的差距。并力求在復習中縮小這一差距,更好地指導我們的復習。
2、高質量備課,
參考網上的課件資料,結合我校學生實際,高度重視基礎知識,基本技能和基本方法的復習。充分發揮全組老師的集體智慧,確保每節課件都是高質量的。統一的教案、統一的課件。
3、高效率的上好每節課,
重視通性、通法的落實。要把復習的重點放在教材中典型例題、習題上;放在體現通性、通法的例題、習題上;放在各部分知識網絡之間的內在聯系上抓好課堂教學質量,定出實施方法和評價方案。
4、狠抓作業批改、講評,教材作業、練習課內完成,課外作業認真批改、講評。一題多思多解,提煉思想方法,提升學生解題能力。
5、認真落實月考,考前作好指導復習,試卷講評起到補缺長智的作用。
6、結合實際,了解學生,分類指導。
高考復習要結合高考的實際,也要結合學生的實際,要了解學生的全面情況,實行綜合指導??赡苡械膶W生應專攻薄弱環節,而另一些學生則應揚長避短。了解學生要加強量的分析,建立檔案、了解學生,才有利于個別輔導,因材施教,對于好的學生,重在提高;對于差的學生,重在補缺。
四、復習參考資料。
1、20__年數學科《考試說明》(全國)及湖南省《補充說明》。
2、《創新設計》高考第一輪總復習數學及《學海導航》高考第一輪總復習數學。
五、教學參考進度。
第一輪的復習要以基礎知識、基本技能、基本方法為主,為高三數學會考做好準備。
1.把握菱形的判定.
2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
3.通過教具的演示培養學生的學習愛好.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、教法設計。
觀察分析討論相結合的方法。
三、重點·難點·疑點及解決辦法。
1.教學重點:菱形的判定方法.
2.教學難點:菱形判定方法的綜合應用.
四、課時安排。
1課時。
五、教具學具預備。
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具。
六、師生互動活動設計。
教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥。
七、教學步驟。
復習提問。
1.敘述菱形的定義與性質.
2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.
引入新課。
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來學習這兩種方法.
講解新課。
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1。
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:。
師問:本定理有幾個條件?
生答:兩個.
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直.
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學生口述證實)。
證實時讓學生注重線段垂直平分線在這里的應用,。
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形.
菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):。
注重:(2)與(4)的題設也是從四邊形出發,和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結、擴展。
1.小結:。
(1)歸納判定菱形的四種常用方法.
(2)說明矩形、菱形之間的區別與聯系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
八、布置作業。
教材p159中9、10、11、13(2)。
九、板書設計。
十、隨堂練習。
教材p153中1、2、3。
教學目標:
結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學重點:
掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學過程。
一、復習。
二、引入新課。
1.假言推理。
假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。
(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結論就肯定大前提的后件;小前提否定大前提的后件,結論就否定大前提的前件。
(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結論就要肯定大前提的前件;小前提否定大前提的前件,結論就要否定大前提的后件。
2.三段論。
三段論是指由兩個簡單判斷作前提和一個簡單判斷作結論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復出現一次。這三個概念都有專門名稱:結論中的賓詞叫“大詞”,結論中的主詞叫“小詞”,結論不出現的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。
3.關系推理指前提中至少有一個是關系判斷的推理,它是根據關系的邏輯性質進行推演的??煞譃榧冴P系推理和混合關系推理。純關系推理就是前提和結論都是關系判斷的推理,包括對稱性關系推理、反對稱性關系推理、傳遞性關系推理和反傳遞性關系推理。
(1)對稱性關系推理是根據關系的對稱性進行的推理。
(2)反對稱性關系推理是根據關系的反對稱性進行的推理。
(3)傳遞性關系推理是根據關系的傳遞性進行的推理。
(4)反傳遞性關系推理是根據關系的反傳遞性進行的推理。
4.完全歸納推理是這樣一種歸納推理:根據對某類事物的全部個別對象的考察,已知它們都具有某種性質,由此得出結論說:該類事物都具有某種性質。
オネ耆歸納推理可用公式表示如下:
オs1具有(或不具有)性質p。
オs2具有(或不具有)性質p……。
オsn具有(或不具有)性質p。
オ(s1s2……sn是s類的所有個別對象)。
オニ以,所有s都具有(或不具有)性質p。
オタ杉,完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結論所斷定的范圍,并未超出前提所斷定的范圍。所以,結論是由前提必然得出的。應用完全歸納推理,只要遵循以下兩點,那末結論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。
小結:本節課學習了演繹推理的基本模式.
(2)使學生初步了解“屬于”關系的意義。
(3)使學生初步了解有限集、無限集、空集的意義。
【重點難點】。
教學重點:集合的基本概念及表示方法。
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合。
授課類型:新授課。
課時安排:1課時。
教具:多媒體、實物投影儀。
【內容分析】。
版權聲明:此文自動收集于網絡,若有來源錯誤或者侵犯您的合法權益,您可通過郵箱與我們取得聯系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwendaquan/huibaotihui/50546.html