在人類歷史發(fā)展和社會生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。下面小編為大家?guī)沓跻幌聝詳?shù)學(xué)課本知識點(diǎn)總結(jié),希望大家喜歡!
初一下冊數(shù)學(xué)課本知識點(diǎn)
一、同底數(shù)冪的乘法
(m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點(diǎn):
a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式;
b)指數(shù)是1時,不要誤以為沒有指數(shù);
c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
二、冪的乘方與積的乘方
三、同底數(shù)冪的除法
(1)運(yùn)用法則的前提是底數(shù)相同,只有底數(shù)相同,才能用此法則
(2)底數(shù)可以是具體的數(shù),也可以是單項(xiàng)式或多項(xiàng)式
(3)指數(shù)相減指的是被除式的指數(shù)減去除式的指數(shù),要求差不為負(fù)
四、整式的乘法
1、單項(xiàng)式的概念:由數(shù)與字母的乘積構(gòu)成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個數(shù)或一個字母也是單項(xiàng)式。單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù),所有字母指數(shù)和叫單項(xiàng)式的次數(shù)。
如:bca22-的系數(shù)為2-,次數(shù)為4,單獨(dú)的一個非零數(shù)的次數(shù)是0。
2、多項(xiàng)式:幾個單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中每個單項(xiàng)式叫多項(xiàng)式的項(xiàng),次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。
五、平方差公式
表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個數(shù)的和與這兩個數(shù)差的積,等于這兩個數(shù)的平方差,這個公式就叫做乘法的平方差公式
公式運(yùn)用
可用于某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
六、完全平方公式
完全平方公式中常見錯誤有:
①漏下了一次項(xiàng)
②混淆公式
③運(yùn)算結(jié)果中符號錯誤
④變式應(yīng)用難于掌握。
七、整式的除法
1、單項(xiàng)式的除法法則
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
注意:首先確定結(jié)果的系數(shù)(即系數(shù)相除),然后同底數(shù)冪相除,如果只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
初一下冊數(shù)學(xué)重要知識點(diǎn)
1.1正數(shù)與負(fù)數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“-”的數(shù)叫負(fù)數(shù)(negativenumber)。
與負(fù)數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positivenumber)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2有理數(shù)
正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)(integer),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)(fraction)。
整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(rationalnumber)。
通常用一條直線上的點(diǎn)表示數(shù),這條直線叫數(shù)軸(numberaxis)。
數(shù)軸三要素:原點(diǎn)、正方向、單位長度。
在直線上任取一個點(diǎn)表示數(shù)0,這個點(diǎn)叫做原點(diǎn)(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(oppositenumber)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值(absolutevalue),記作|a|。
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負(fù)數(shù),絕對值大的反而小。
1.3有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。
1.4有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。mì
求n個相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學(xué)計(jì)數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significantdigit)。
初一下冊數(shù)學(xué)知識點(diǎn)
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。
3、兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是
鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,
與互為鄰補(bǔ)角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。 = ;
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當(dāng)= 90°時,⊥ 。
垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
性質(zhì)3:如圖2所示,當(dāng)a ⊥ b時,= = = = 90°。
點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。
6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。
7、平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則= ; = ; = ; = 。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。如圖4所示,如果a∥b,則= ; = 。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。如圖4所示,如果a∥b,則+ = 180°;
+ = 180°。
性質(zhì)4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果=
或=或=或=,則a∥b。
判定2:內(nèi)錯角相等,兩直線平行。如圖5所示,如果=或=,則a∥b 。
判定3:同旁內(nèi)角互補(bǔ),兩直線平行。如圖5所示,如果+ = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥ 。
9、判斷一件事情的語句叫命題。命題由題設(shè)和結(jié)論兩部分組成,有真命題和假命題之分。如果題設(shè)成立,那么結(jié)論一定成立,這樣的命題叫真命題;如果題設(shè)成立,那么結(jié)論不一定成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實(shí)的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據(jù)。
10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的形狀和大小完全相同。平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。
平移性質(zhì):平移前后兩個圖形中①對應(yīng)點(diǎn)的連線平行且相等;②對應(yīng)線段相等;③對應(yīng)角相等。
第六章實(shí)數(shù)
【知識點(diǎn)一】實(shí)數(shù)的分類
1、按定義分類:2.按性質(zhì)符號分類:
注:0既不是正數(shù)也不是負(fù)數(shù).
【知識點(diǎn)二】實(shí)數(shù)的相關(guān)概念
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.
(2)幾何意義:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個點(diǎn)表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱.
(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù)a+b=0.
2.絕對值|a|≥0.
3.倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù).
4.平方根
(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a≥0)的平方根記作.
(2)一個正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零.
【知識點(diǎn)三】實(shí)數(shù)與數(shù)軸
數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.
【知識點(diǎn)四】實(shí)數(shù)大小的比較
1.對于數(shù)軸上的任意兩個點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.
2.正數(shù)都大于0,負(fù)數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負(fù)數(shù);絕對值大的反而小.
3.無理數(shù)的比較大?。?/p>
【知識點(diǎn)五】實(shí)數(shù)的運(yùn)算
1.加法
同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).
2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
3.乘法
幾個非零實(shí)數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù).幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
4.除法
除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù).
(2)正數(shù)和0可以開平方,負(fù)數(shù)不能開平方;正數(shù)、負(fù)數(shù)和0都可以開立方.
(3)零指數(shù)與負(fù)指數(shù)
【知識點(diǎn)六】有效數(shù)字和科學(xué)記數(shù)法
1.有效數(shù)字:
一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.
2.科學(xué)記數(shù)法:
把一個數(shù)用(1≤<10,n為整數(shù))的形式記數(shù)的方法叫科學(xué)記數(shù)法.
第七章平面直角坐標(biāo)系
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b) 。
2、平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
3、橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4、坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),記作P(a,b)。
5、象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個象限內(nèi)。
6、各象限點(diǎn)的坐標(biāo)特點(diǎn)①第一象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;②第二象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;③第三象限的`點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;④第四象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0。
7、坐標(biāo)軸上點(diǎn)的坐標(biāo)特點(diǎn)①x軸正半軸上的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;②x軸負(fù)半軸上的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;③y軸正半軸上的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;④y軸負(fù)半軸上的點(diǎn):橫坐
標(biāo)0,縱坐標(biāo)0;⑤坐標(biāo)原點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0。(填“>”、“<”或“=”)
8、點(diǎn)P(a,b)到x軸的距離是|b|,到y(tǒng)軸的距離是|a| 。
9、對稱點(diǎn)的坐標(biāo)特點(diǎn)①關(guān)于x軸對稱的兩個點(diǎn),橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);②關(guān)于y軸對稱的兩個點(diǎn),縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù);③關(guān)于原點(diǎn)對稱的兩個點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)。
10、點(diǎn)P(2,3)到x軸的距離是;到y(tǒng)軸的距離是;點(diǎn)P(2,3)關(guān)于x軸對稱的點(diǎn)坐標(biāo)為(,);點(diǎn)P(2,3)關(guān)于y軸對稱的點(diǎn)坐標(biāo)為(,)。
11、如果兩個點(diǎn)的橫坐標(biāo)相同,則過這兩點(diǎn)的直線與y軸平行、與x軸垂直;如果兩點(diǎn)的縱坐標(biāo)相同,則過這兩點(diǎn)的直線與x軸平行、與y軸垂直。如果點(diǎn)P(2,3)、Q(2,6),這兩點(diǎn)橫坐標(biāo)相同,則PQ∥y軸,PQ⊥x軸;如果點(diǎn)P(-1,2)、Q(4,2),這兩點(diǎn)縱坐標(biāo)相同,則PQ∥x軸,PQ⊥y軸。
12、平行于x軸的直線上的點(diǎn)的縱坐標(biāo)相同;平行于y軸的直線上的點(diǎn)的橫坐標(biāo)相同;在一、三象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同;在二、四象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù)。如果點(diǎn)P(a,b)在一、三象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同,即a = b ;如果點(diǎn)P(a,b)在二、四象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),即a = -b 。
13、表示一個點(diǎn)(或物體)的位置的方法:一是準(zhǔn)確恰當(dāng)?shù)亟⑵矫嬷苯亲鴺?biāo)系;二是正確寫出物體或某地所在的點(diǎn)的坐標(biāo)。選擇的坐標(biāo)原點(diǎn)不同,建立的平面直角坐標(biāo)系也不同,得到的同一個點(diǎn)的坐標(biāo)也不同。
14、圖形的平移可以轉(zhuǎn)化為點(diǎn)的平移。坐標(biāo)平移規(guī)律:①左右平移時,橫坐標(biāo)進(jìn)行加減,縱坐標(biāo)不變;②上下平移時,橫坐標(biāo)不變,縱坐標(biāo)進(jìn)行加減;③坐標(biāo)進(jìn)行加減時,按“左減右加、上加下減”的規(guī)律進(jìn)行。如將點(diǎn)P(2,3)向左平移2個單位后得到的點(diǎn)的坐標(biāo)為(,);將點(diǎn)P(2,3)向右平移2個單位后得到的點(diǎn)的坐標(biāo)為(,);將點(diǎn)P(2,3)向上平移2個單位后得到的點(diǎn)的坐標(biāo)為(,);將點(diǎn)P(2,3)向下平移2個單位后得到的點(diǎn)的坐標(biāo)為(,);將點(diǎn)P(2,3)先向左平移3個單位后再向上平移5個單位后得到的點(diǎn)的坐標(biāo)為(,);將點(diǎn)P(2,3)先向左平移3個單位后再向下平移5個單位后得到的點(diǎn)的坐標(biāo)為(,);將點(diǎn)P(2,3)先向右平移3個單位后再向上平移5個單位后得到的點(diǎn)的坐標(biāo)為(,);將點(diǎn)P(2,3)先向右平移3個單位后再向下平移5個單位后得到的點(diǎn)的坐標(biāo)為(,)。
第八章二元一次方程組
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、含有未知數(shù)的等式叫方程,使方程左右兩邊的值相等的未知數(shù)的值叫方程的解。
2、方程含有兩個未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為(為常數(shù),并且)。使二元一次方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程的解,一個二元一次方程一般有無數(shù)組解。
3、方程組含有兩個未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數(shù)的式子表示另一個未知數(shù),如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數(shù)的式子表示另一個未知數(shù);再將表示出的未知數(shù)代入另一個方程中,從而消去一個未知數(shù),求出另一個未知數(shù)的值,將求得的未知數(shù)的值代入原方程組中的任何一個方程,求出另外一個未知數(shù)的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當(dāng)?shù)臄?shù)去乘方程的兩邊,使同一個未知數(shù)的系數(shù)相等或互為相反數(shù);(2)把兩個方程的兩邊分別相加或相減,消去一個未知數(shù);(3)解這個一元一次方程,求出一個未知數(shù)的值;(4)將求出的未知數(shù)的值代入原方程組中的任何一個方程,求出另外一個未知數(shù)的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數(shù)的系數(shù)特點(diǎn),確定先消去哪個未知數(shù);②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數(shù),得到一個關(guān)于另外兩個未知數(shù)的二元一次方程組;③解這個二元一次方程組,求得兩個未知數(shù)的值;④將這兩個未知數(shù)的值代入原方程組中較簡單的一個方程中,求出第三個未知數(shù)的值,從而得到原三元一次方程組的解。
第九章不等式與不等式組
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、用不等號表示不等關(guān)系的式子叫不等式,不等號主要包括:> 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知數(shù)的不等式中,使不等式成立的未知數(shù)的值叫不等式的解,一個含有未知數(shù)的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數(shù)軸上表示出來。求不等式的解集的過程叫解不等式。含有一個未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的不等式叫一元一次不等式。
3、不等式的性質(zhì):
①性質(zhì)1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向不變。
用字母表示為:如果,那么;如果,那么;
如果,那么;如果,那么。
②性質(zhì)2:不等式的兩邊同時乘以(或除以)同一個正數(shù),不等號的方向不變。
用字母表示為:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
③性質(zhì)3:不等式的兩邊同時乘以(或除以)同一個負(fù)數(shù),不等號的方向改變。
用字母表示為:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1 。這與解一元一次方程類似,在解時要根據(jù)一元一次不等式的具體情況靈活選擇步驟。
5、不等式組中含有一個未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的不等式組叫一元一次不等式組。使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數(shù)軸上表示出來。求不等式組的解集的過程叫解不等式組。
6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數(shù)軸求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒有公共部分,則這個不等式組無解(此時也稱這個不等式組的解集為空集)。
7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大取中間,大大小小無處找。
第十章數(shù)據(jù)的收集、整理與描述
知識要點(diǎn)
1、對數(shù)據(jù)進(jìn)行處理的一般過程:收集數(shù)據(jù)、整理數(shù)據(jù)、描述數(shù)據(jù)、分析得出結(jié)論。
2、數(shù)據(jù)收集過程中,調(diào)查的方法通常有兩種:全面調(diào)查和抽樣調(diào)查。
3、除了文字?jǐn)⑹?、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數(shù)據(jù)。
4、抽樣調(diào)查簡稱抽查,它只抽取一部分對象進(jìn)行調(diào)查,根據(jù)調(diào)查數(shù)據(jù)推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數(shù)目叫這個樣本的容量。
5、畫頻數(shù)直方圖的步驟:①計(jì)算數(shù)差(值與最小值的差);②確定組距和組數(shù);③列頻數(shù)分布表;④畫頻數(shù)直方圖。
版權(quán)聲明:此文自動收集于網(wǎng)絡(luò),若有來源錯誤或者侵犯您的合法權(quán)益,您可通過郵箱與我們?nèi)〉寐?lián)系,我們將及時進(jìn)行處理。
本文地址:http://www.springy.cn/fanwen/zongjie/231783.html