雖然在學習的過程中會遇到許多不順心的事,但古人說得好——吃一塹,長一智。多了一次失敗,就多了一次教訓;多了一次挫折,就多了一次經驗。下面是小編為大家精心整理的九年級數(shù)學下冊知識點總結,希望對大家有所幫助。
銳角三角函數(shù)
1、正弦:在rt△abc中,銳角∠a的對邊a與斜邊的比叫做∠a的正弦,記作sina,即sina=∠a的對邊/斜邊=a/c;
2、余弦:在rt△abc中,銳角∠a的鄰邊b與斜邊的比叫做∠a的余弦,記作cosa,即cosa=∠a的鄰邊/斜邊=b/c;
3、正切:在rt△abc中,銳角∠a的對邊與鄰邊的比叫做∠a的正切,記作tana,即tana=∠a的對邊/∠a的鄰邊=a/b。
①tana是一個完整的符號,它表示∠a的正切,記號里習慣省去角的符號“∠”;
②tana沒有單位,它表示一個比值,即直角三角形中∠a的對邊與鄰邊的比;
③tana不表示“tan”乘以“a”;
④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。
4、余切:定義:在rt△abc中,銳角∠a的鄰邊與對邊的比叫做∠a的余切,記作cota,即cota=∠a的鄰邊/∠a的對邊=b/a;
5、一個銳角的正弦、余弦、正切、余切分別等于它的余角的余弦、正弦、余切、正切。(通常我們稱正弦、余弦互為余函數(shù)。同樣,也稱正切、余切互為余函數(shù),可以概括為:一個銳角的三角函數(shù)等于它的余角的余函數(shù))用等式表達:
若∠a為銳角,則①sina=cos(90°∠a)等等。
6、記住特殊角的三角函數(shù)值表0°,30°,45°,60°,90°。
7、當角度在0°~90°間變化時,正弦值、正切值隨著角度的增大(或減小)而增大(或減小);余弦值、余切值隨著角度的增大(或減小)而減小(或增大)。0≤sinα≤1,0≤cosα≤1。
解直角三角形
1.解直角三角形:在直角三角形中,由已知元素求未知元素的過程。
2.在解直角三角形的過程中用到的關系:(在△abc中,∠c為直角,∠a、∠b、∠c所對的邊分別為a、b、c,)
(1)三邊之間的關系:a2+b2=c2;(勾股定理)
(2)兩銳角的關系:∠a+∠b=90°;
(3)邊與角之間的關系:
sina=a/c;
cosa=b/c;
tana=a/b。
sina=cosb
cosa=sinb
sina=cos(90°-a)
sin2α+cos2α=1
二次函數(shù)
1、定義:形如y=ax2+bx+c(a≠0,a、b、c是常數(shù))的函數(shù)叫二次函數(shù)。
2、二次函數(shù)的分類:①y=ax2:頂點坐標:原點;對稱軸:y軸;
②y=ax2+c:頂點坐標:(0、c);對稱軸:y軸;
③y=a(x-h)2:頂點坐標:(h、0);對稱軸:直線x=h;
④y=a(x-h)2+k:頂點坐標:(h、k);對稱軸:直線x=h;
⑤y=ax2+bx+c:頂點坐標:(-b/2a,4ac-b2/4a);對稱軸:直線x=-b/2a
3、a、b、c符號的判定:a:開口方向向上→a>0;開口方向向下→a<0。
b:與a左同右異,對稱軸在y軸左側,a、b同號;對稱軸在y軸右側,a、b異號。
C:交與y軸正半軸,c>0;交與y軸負半軸,c<0
b2-4ac:與x軸交點的個數(shù),△>0→兩個交點,△<0→無交點,△=0→一個交點。
3、平移規(guī)律:“正左負右”“正上負下”。
前提:配方成y=a(x-h)2+k的形式。
4、待定系數(shù)法確定函數(shù)關系式:①頂點在原點選y=ax2;
②頂點在y軸選y=ax2+c;
③通過坐標原點選y=ax2+bx;
④知道頂點在x軸上選y=a(x-h)2;
⑤知道頂點坐標選y=a(x-h)2+k;
⑥知道三點的坐標選y=ax2+bx+c。
5、其他應用:求與x軸的交點→解一元二次方程;與y軸交點為(0、c)。
6、對稱規(guī)律:
①兩拋物線關于x軸對稱:a、b、c都變?yōu)槠湎喾磾?shù)。
②兩拋物線關于y軸對稱:a、c不變,b變?yōu)槠湎喾磾?shù)。
7、實際問題:利潤=銷售額-總進價-其他費用,利潤=(售價-進價)__銷售量-其他費用。
版權聲明:此文自動收集于網絡,若有來源錯誤或者侵犯您的合法權益,您可通過郵箱與我們取得聯(lián)系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwen/zongjie/230918.html