很多同學在復(fù)習高二上冊數(shù)學時,因為之前沒有做過系統(tǒng)的總結(jié),導致復(fù)習時效率不高。下面小編為大家?guī)砀叨蠈W期數(shù)學基礎(chǔ)知識點總結(jié),希望大家喜歡!
高二上學期數(shù)學基礎(chǔ)知識點
一、直線與圓:
1、直線的傾斜角的范圍是在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。
3、直線方程:
(1)點斜式:直線過點斜率為,則直線方程為
(2)斜截式:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗
(2)垂直A1A2+B1B2=0
5、點到直線的距離公式;
兩條平行線與的距離是
6、圓的標準方程:圓的一般方程:注意能將標準方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的`關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2
3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長公式:
三、直線、平面、簡單幾何體:
1、學會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x軸的線段長不變,平行于y軸的線段長減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
(1)柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
(2)錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
(3)臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
(4)球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
(1)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
(2)直線與平面所成的角:直線與射影所成的角
四、導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導數(shù)的定義:在點處的導數(shù)記作.
2、導數(shù)的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.、導數(shù)的四則運算法則:
5、導數(shù)的應(yīng)用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數(shù);
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;
(3)求可導函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
五、常用邏輯用語:
1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.
3、邏輯聯(lián)結(jié)詞:
(1)且(and):命題形式pq;pqpqpqp
(2)或(or):命題形式pq;真真真真假
(3)非(not):命題形式p.真假假真假
假真假真真
假假假假真
“或命題”的真假特點是“一真即真,要假全假”;
“且命題”的真假特點是“一假即假,要真全真”;
“非命題”的真假特點是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。
如何學好數(shù)學
作好課前預(yù)習,掌握聽課主動權(quán)
“凡事預(yù)則主,不預(yù)則廢”。課堂就是戰(zhàn)場,學習就是戰(zhàn)爭,不能打無準備的仗。如果第二天有數(shù)學課,第一天就要進行充分準備。一方面要通讀教材中的相關(guān)內(nèi)容,看看哪些是懂得的,是已經(jīng)學過的知識;哪些是不懂的,是要通過老師講解才能理解的新知識。把不懂的部分標注清楚,進行初步思考,把需要解決的問題提出來。另一方面還要對教材后邊的習題初做一遍,把不會做的題做上記號,一起帶到課堂去解決。
專心聽講,做好課堂筆記
聽課要提前進入狀態(tài)。課前準備的好壞,直接影響聽課的效果。正式上課鈴聲未響,老師尚未走進教室之前,就該把有關(guān)的課本(包括筆記本,練習本)和文具事先擺放在桌面上,等待老師的到來。不要指望老師站在講臺上等大家慢慢翻箱倒柜,找這找那。老師進入教室,就應(yīng)該帶著預(yù)習過程中需要解決的問題,專心聽講。還要掌握老師講課的規(guī)律,圍繞老師講課質(zhì)點,積極思考,踴躍回答老師提出的問題。
及時復(fù)習,把知識轉(zhuǎn)化為技能
復(fù)習是學習過程的重要環(huán)節(jié)。復(fù)習時,要再次閱讀教材,回想當天所學的內(nèi)容,追憶老師講課的過程,再現(xiàn)課堂所學的知識,讀懂老師已講的例題,(這些例題通常對完成作業(yè)有較強的啟發(fā)和示范作用),理解和記憶基本的定義、定理、公式、法則(這些就是必須掌握的知識點)。當天及時復(fù)習,能夠減少知識遺忘,易于鞏固和記憶。
學習數(shù)學的竅門有哪些
不要死記硬背一些公式、定律,而是要靠分析、理解,做到靈活運用,舉一反三。特別要重視課堂上學習新知識和分析練習的時候,不能思想開小差,管自己做與學習無關(guān)的事情。注意力一定要高度集中,并積極思考,遇到不懂題目時要及時做好記錄,課后和同學進行探討,做好查漏補缺。
要有善于觀察、閱讀的好習慣。只要我們做數(shù)學的有心人,細心觀察、思考,我們就會發(fā)現(xiàn)生活中到處都有數(shù)學。除此之外,同學們還可以從多方面、多種渠道來學習數(shù)學。如:從電視、網(wǎng)絡(luò)、《小學生數(shù)學報》、《數(shù)學小靈通》等報刊雜志上學習數(shù)學,不斷擴展知識面。
要學會概括和積累。及時總結(jié)解題規(guī)律,特別是積累一些經(jīng)典和特殊的題目。這樣既可以學得輕松,又可以提高學習的效率和質(zhì)量。也要重視其他學科的學習,因為各個學科之間是有著密切的聯(lián)系,它對學習數(shù)學有促進的作用。
版權(quán)聲明:此文自動收集于網(wǎng)絡(luò),若有來源錯誤或者侵犯您的合法權(quán)益,您可通過郵箱與我們?nèi)〉寐?lián)系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwen/zongjie/222428.html