日子總是像從指尖流過的細沙,在不經意間悄然滑落,回首這段時間的教學歷程,收獲了成長和感動,是不是需要好好寫一份教學總結呢?那么教學總結怎么寫才能體現你真正的價值呢?下面是小編給大家帶來的高中數學知識點總結歸納,以供大家參考!
高中數學知識點總結歸納
一、導數的應用
1、用導數研究函數的最值
確定函數在其確定的定義域內可導(通常為開區間),求出導函數在定義域內的零點,研究在零點左、右的函數的單調性,若左增,右減,則在該零點處,函數去極大值;若左邊減少,右邊增加,則該零點處函數取極小值。
學習了如何用導數研究函數的最值之后,可以做一個有關導數和函數的綜合題來檢驗下學習成果。
2、生活中常見的函數優化問題
1)費用、成本最省問題
2)利潤、收益最大問題
3)面積、體積最(大)問題
二、推理與證明
1、歸納推理:歸納推理是高二數學的一個重點內容,其難點就是有部分結論得到一般結論,的方法是充分考慮部分結論提供的信息,從中發現一般規律;類比推理的難點是發現兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,的方法是利用已經掌握的數學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特征得出所需要的相似特征。
2、類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
三、不等式
對于含有參數的一元二次不等式解的討論
1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據方程的判別式進行分類討論。
通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。
四、坐標平面上的直線
1、內容要目:直線的點方向式方程、直線的點法向式方程、點斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點到直線的距離,兩直線的夾角以及兩平行線之間的距離。
2、基本要求:掌握求直線的方法,熟練轉化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點與直線、直線與直線的不同位置,能正確求點到直線的距離、兩直線的交點坐標及兩直線的夾角大小。
3、重難點:初步建立代數方法解決幾何問題的觀念,正確將幾何條件與代數表示進行轉化,定量地研究點與直線、直線與直線的位置關系。根據兩個獨立條件求出直線方程。熟練運用待定系數法。
五、圓錐曲線
1、內容要目:直角坐標系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標準方程及圓的一般方程。橢圓、雙曲線、拋物線的標準方程及它們的性質。
2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數方法判斷定點是否在曲線
上及求曲線的交點。掌握圓、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點之間的距離及交點的中點坐標。利用直線和圓、圓和圓的位置關系的幾何判定,確定它們的位置關系并利用解析法解決相應的幾何問題。
3、重難點:建立數形結合的概念,理解曲線與方程的對應關系,掌握代數研究幾何的方法,掌握把已知條件轉化為等價的代數表示,通過代數方法解決幾何問題。
高一數學上學期知識點復習
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
4.函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2|a|的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4|a|的周期函數;
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5.方程k=f(x)有解k∈D(D為f(x)的值域);
a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負”記憶;
(4)alogaN=N(a>0,a≠1,N>0);
6.判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
7.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
8.對于反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個函數具有相同的單調性;
(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
9.處理二次函數的問題勿忘數形結合
二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;
10依據單調性
利用一次函數在區間上的保號性可解決求一類參數的范圍問題;
11恒成立問題的處理方法:
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
練習題:
1.(-3,4)關于x軸對稱的點的坐標為_________,關于y軸對稱的點的坐標為__________,
關于原點對稱的坐標為__________.
2.點B(-5,-2)到x軸的距離是____,到y軸的距離是____,到原點的距離是____
3.以點(3,0)為圓心,半徑為5的圓與x軸交點坐標為_________________,
與y軸交點坐標為________________
4.點P(a-3,5-a)在第一象限內,則a的取值范圍是____________
5.小華用500元去購買單價為3元的一種商品,剩余的錢y(元)與購買這種商品的件數x(件)
之間的函數關系是______________,x的取值范圍是__________
6.函數y=的自變量x的取值范圍是________
7.當a=____時,函數y=x是正比例函數
8.函數y=-2x+4的圖象經過___________象限,它與兩坐標軸圍成的三角形面積為_________,
周長為_______
9.一次函數y=kx+b的圖象經過點(1,5),交y軸于3,則k=____,b=____
10.若點(m,m+3)在函數y=-x+2的圖象上,則m=____
11.y與3x成正比例,當x=8時,y=-12,則y與x的函數解析式為___________
12.函數y=-x的圖象是一條過原點及(2,___)的直線,這條直線經過第_____象限,
當x增大時,y隨之________
13.函數y=2x-4,當x_______,y0,b0,b>0;C、k
高一數學必考知識點
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的.真子集。
版權聲明:此文自動收集于網絡,若有來源錯誤或者侵犯您的合法權益,您可通過郵箱與我們取得聯系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwen/zongjie/220314.html