總結是在某一特定時間段對學習和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經驗和教訓加以回顧和分析的書面材料,它可以提升我們發現問題的能力,快快來寫一份總結吧。下面是小編給大家帶來的梳理高二數學知識點總結,以供大家參考!
梳理高二數學知識點總結
(1)總體和樣本
①在統計學中,把研究對象的全體叫做總體.
②把每個研究對象叫做個體.
③把總體中個體的總數叫做總體容量.
④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,....,研究,我們稱它為樣本.其中個體的個數稱為樣本容量.
(2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的方法:
①抽簽法
②隨機數表法
③計算機模擬法
在簡單隨機抽樣的樣本容量設計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調查對象群體中的每一個對象編號;
②準備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調查
高二數學知識點框架整合
1、在中學我們只研直圓柱、直圓錐和直圓臺。所以對圓柱、圓錐、圓臺的旋轉定義、實際上是直圓柱、直圓錐、直圓臺的定義。
這樣定義直觀形象,便于理解,而且對它們的性質也易推導。
對于球的定義中,要注意區分球和球面的概念,球是實心的。
等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區分。
2、圓柱、圓錐、圓和球的性質
(1)圓柱的性質,要強調兩點:一是連心線垂直圓柱的底面;二是三個截面的性質——平行于底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。
(2)圓錐的性質,要強調三點
①平行于底面的截面圓的性質:
截面圓面積和底面圓面積的比等于從頂點到截面和從頂點到底面距離的平方比。
②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:
易知,截面三角形的頂角不大于軸截面的頂角(如圖10-20),事實上,由BC≥AB,VC=VB=VA可得∠B≤BVC、
由于截面三角形的頂角不大于軸截面的頂角。
所以,當軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有
當軸截面的頂角θ>90°時,軸截面的面積卻不是的,這是因為,若90°≤α<θ<180°時,1≥sinα>sinθ>0、
③圓錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關系式
l2=h2+R2
(3)圓臺的性質,都是從“圓臺為截頭圓錐”這個事實推得的,高考,但仍要強調下面幾點:
①圓臺的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
②平行于底面的截面若將圓臺的高分成距上、下兩底為兩段的截面面積為S,則
其中S1和S2分別為上、下底面面積。
的截面性質的推廣。
③圓臺的母線l,高h和上、下兩底圓的半徑r、R,組成一個直角梯形,且有
l2=h2+(R-r)2
圓臺的有關計算問題,常歸結為解這個直角梯形。
(4)球的性質,著重掌握其截面的性質。
①用任意平面截球所得的截面是一個圓面,球心和截面圓圓心的連線與這個截面垂直。
②如果用R和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則
R2=r2+d2
即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。
3、圓柱、圓錐、圓臺和球的表面積
(1)圓柱、圓錐、圓臺和多面體一樣都是可以平面展開的。
①圓柱、圓錐、圓臺的側面展開圖,是求其側面積的基本依據。
圓柱的側面展開圖,是由底面圖的周長和母線長組成的一個矩形。
②圓錐和側面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為
③圓臺的側面展開圖是一個由兩條母線長和上、下底面周長組成的扇環,其扇環的圓心角為
這個公式有利于空間幾何體和其側面展開圖的互化
顯然,當r=0時,這個公式就是圓錐側面展開圖扇形的圓心角公式,所以,圓錐側面展開圖扇形的圓心角公式是圓臺相關角的特例。
(2)圓柱、圓錐和圓臺的側面公式為
S側=π(r+R)l
當r=R時,S側=2πRl,即圓柱的側面積公式。
當r=0時,S側=rRl,即圓錐的面積公式。
要重視,側面積間的這種關系。
(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、臺的方法完全不同。
推導出來,要用“微積分”等高等數學的知識,課本上不能算是一種證明。
求不規則圓形的度量屬性的常用方法是“細分——求和——取極限”,這種方法,在學完“微積分”的相關內容后,不證自明,這里從略。
4、畫圓柱、圓錐、圓臺和球的直觀圖的方法——正等測
(1)正等測畫直觀圖的要求:
①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。
②在投影圖上取線段長度的方法是:在三軸上或平行于三軸的線段都取實長。
這里與斜二測畫直觀圖的方法不同,要注意它們的區別。
(2)正等測圓柱、圓錐、圓臺的直觀圖的區別主要是水平放置的平面圖形。
用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實長。
5、關于幾何體表面內兩點間的最短距離問題
柱、錐、臺的表面都可以平面展開,這些幾何體表面內兩點間最短距離,就是其平面內展開圖內兩點間的線段長。
由于球面不能平面展開,所以求球面內兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。
高二數學全冊重要知識點
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.
三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、余弦的誘導公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程.
八、圓錐曲線(18課時,7個)1橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質.
九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式’4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.
十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)
十二、概率與統計(14課時,6個)1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸.
十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.
十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的值和最小值.
十五、復數(4課時,4個)1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試卷成功與否的標準之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數_賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特征方程法。函數迭代,求n次迭代,簡單的函數方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恒等式。一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同余,歐幾里得除法,非負最小完全剩余類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
版權聲明:此文自動收集于網絡,若有來源錯誤或者侵犯您的合法權益,您可通過郵箱與我們取得聯系,我們將及時進行處理。
本文地址:http://www.springy.cn/fanwen/zongjie/165642.html