高中教案需要考慮學(xué)生的學(xué)習(xí)特點(diǎn)和能力水平,注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。教師需要不斷更新教案,與時(shí)俱進(jìn),適應(yīng)時(shí)代和學(xué)生的發(fā)展需求。
熟練掌握三角函數(shù)式的求值。
教學(xué)重難點(diǎn)。
熟練掌握三角函數(shù)式的求值。
教學(xué)過(guò)程。
【知識(shí)點(diǎn)精講】。
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
三角函數(shù)式的求值的類型一般可分為:。
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次。
注意點(diǎn):靈活角的變形和公式的變形。
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論。
【例題選講】。
課堂小結(jié)】。
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形。
三角函數(shù)式的求值的類型一般可分為:。
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次。
注意點(diǎn):靈活角的變形和公式的變形。
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論。
【作業(yè)布置】。
p172能力提高5,6,7,8高考預(yù)測(cè)。
數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過(guò)的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
二、重視每一個(gè)學(xué)生。
三、做好課外與學(xué)生的溝通。
四、要多了解學(xué)生。
你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;
1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。
山西鐵路工程建設(shè)監(jiān)理有限公司。
劉榮申。
教學(xué)目標(biāo):
通過(guò)實(shí)例,理解冪函數(shù)的概念;能區(qū)分指數(shù)函數(shù)與冪函數(shù);會(huì)用待定系數(shù)法求冪函數(shù)的解析式。
教學(xué)重難點(diǎn):
重點(diǎn)從五個(gè)具體冪函數(shù)中認(rèn)識(shí)冪函數(shù)的一些特征。
難點(diǎn)指數(shù)函數(shù)與冪函數(shù)的區(qū)別和冪函數(shù)解析式的求解。
教學(xué)方法與手段:
1、采用師生互動(dòng)的方式,在教師的引導(dǎo)下,學(xué)生通過(guò)思考、交流、討論,理解冪函數(shù)的定義,體驗(yàn)自主探索、合作交流的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的積極性與主動(dòng)性。
2、利用投影儀及計(jì)算機(jī)輔助教學(xué)。
教學(xué)過(guò)程:
函數(shù)的完美追求:對(duì)于式子,
如果一定,n隨的變化而變化,我們建立了指數(shù)函數(shù);
如果一定,隨n的變化而變化,我們建立了對(duì)數(shù)函數(shù)。
設(shè)想:如果一定,n隨的變化而變化,是不是也應(yīng)該確定一個(gè)函數(shù)呢?
創(chuàng)設(shè)情境。
請(qǐng)大家看以下問(wèn)題:
思考:以上問(wèn)題中的函數(shù)有什么共同特征?
引導(dǎo)學(xué)生分析歸納概括得出:(1)都是以自變量x為底數(shù);(2)指數(shù)為常數(shù);(3)自變量x前的系數(shù)為1;(4)只有一項(xiàng)。上述問(wèn)題中涉及的函數(shù),都是形如的函數(shù)。
探究新知。
一、冪函數(shù)的定義。
一般地,形如的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
中前面的系數(shù)是1,后面沒(méi)有其它項(xiàng)。
小試牛刀。
(1),
思考:冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?
一、教材分析:
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過(guò)小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問(wèn)題,這三個(gè)問(wèn)題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒(méi)有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問(wèn)題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問(wèn)題的聯(lián)系。
本節(jié)教學(xué)時(shí)間安排1課時(shí)。
二、教學(xué)目標(biāo):
知識(shí)技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體會(huì)方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒(méi)有實(shí)根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過(guò)程,獲得用圖象法求方程近似根的體驗(yàn).
3.通過(guò)觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問(wèn)題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過(guò)利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問(wèn)題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
2.通過(guò)學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會(huì)方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
1.探索方程與函數(shù)之間關(guān)系的過(guò)程。
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
四、教學(xué)方法:?jiǎn)l(fā)引導(dǎo)合作交流。
五:教具、學(xué)具:課件。
六、教學(xué)過(guò)程:
[活動(dòng)1]檢查預(yù)習(xí)引出課題。
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
教師重點(diǎn)關(guān)注:學(xué)生回答問(wèn)題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來(lái),2題的格式要規(guī)范。
設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來(lái),讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問(wèn)題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過(guò)的熟悉的知識(shí)類比探究本課新知識(shí)。
[活動(dòng)2]創(chuàng)設(shè)情境探究新知。
問(wèn)題。
1.課本p94問(wèn)題.
3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
師生行為:教師提出問(wèn)題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問(wèn)題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問(wèn)題3是由學(xué)生分組探究的,這個(gè)問(wèn)題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
教師重點(diǎn)關(guān)注:
1.學(xué)生能否把實(shí)際問(wèn)題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;。
2.學(xué)生在思考問(wèn)題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;。
3.學(xué)生在探究問(wèn)題的過(guò)程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽(tīng)、獲得信息、梳理歸納的過(guò)程,使解決問(wèn)題的方法更準(zhǔn)確。
設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問(wèn)題入手給學(xué)生創(chuàng)設(shè)熟悉的問(wèn)題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問(wèn)題的關(guān)系;學(xué)生通過(guò)小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
[活動(dòng)3]例題學(xué)習(xí)鞏固提高。
問(wèn)題。
例利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
師生行為:教師提出問(wèn)題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過(guò)程中格式是否規(guī)范;(2)學(xué)生所畫(huà)圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計(jì)意圖:通過(guò)預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
[活動(dòng)4]練習(xí)反饋鞏固新知。
1、先做簡(jiǎn)單題,后做難題。
2、遇到較難的大題,把所有跟該題有關(guān)的知識(shí)點(diǎn)都寫(xiě)出來(lái),要知道數(shù)學(xué)講究步驟分。
3、若是證明題,萬(wàn)一不會(huì),可以先寫(xiě)出已知條件,再寫(xiě)出要證明的最后一步,再一步一步往上推,中間步驟隨便寫(xiě)點(diǎn)。(使用于粗心的教師,但我們不提倡,重點(diǎn)是要平時(shí)學(xué)好)。
一、整體把握、抓大放小。
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來(lái)的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時(shí)間。
1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒(méi)有做出來(lái)的題目。對(duì)于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時(shí)花了過(guò)多的時(shí)間才做出來(lái)的題目。對(duì)于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過(guò)“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來(lái)。
三、碰到難題時(shí)。
1、你可以先用“直覺(jué)”最快的找到解題思路;。
2、如果“直覺(jué)”不管用,你可以聯(lián)想以前做過(guò)的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。
4、對(duì)于花了一定時(shí)間仍然不能做出來(lái)的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
引入課題1.觀察下列各個(gè)函數(shù)的圖象,并說(shuō)說(shuō)它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:
yx1-11-1yx1-11-1yx1-11-1。
1隨x的增大,y的值有什么變化?2能否看出函數(shù)的最大、最小值?
2.畫(huà)出下列函數(shù)的圖象,觀察其變化規(guī)律:
f(x)=x1從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.
yx1-11-1。
2.f(x)=-2x+11從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的`值隨著________.
1在區(qū)間____________上,f(x)的值隨著x的增大而________.
2在區(qū)間____________上,f(x)的值隨著x的增大而________.
老師講課認(rèn)真聽(tīng)講,不會(huì)的問(wèn)題及時(shí)標(biāo)記。在課堂上,做一個(gè)好學(xué)生,認(rèn)真聽(tīng)講,對(duì)于老師講的問(wèn)題及時(shí)記錄,進(jìn)行相應(yīng)的標(biāo)記,在下課的時(shí)候,及時(shí)詢問(wèn)老師,早日解決問(wèn)題。
一定要課前預(yù)習(xí)一下知識(shí)點(diǎn)。在上課前或平時(shí)閑暇時(shí)間,一定要注意課下多多預(yù)習(xí),預(yù)習(xí)比復(fù)習(xí)更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對(duì)自己的理解有幫助。
課上要學(xué)會(huì)學(xué)習(xí),記筆記,也要記住老師講的知識(shí)點(diǎn)。課堂上,自己要活躍一點(diǎn),帶給老師感覺(jué),讓老師對(duì)你有印象,便于日后學(xué)習(xí)高中數(shù)學(xué),與老師探討學(xué)習(xí)方法,記筆記,記住講的重點(diǎn)。
多做一些比較普通而又常出的問(wèn)題,來(lái)熟悉自己學(xué)的知識(shí)。在課下的時(shí)候,自己找出適合自己做的題,在做題中找出適合自己的題目,來(lái)進(jìn)行做和學(xué),總有一份題目適合自己做,便會(huì)更熟悉自己學(xué)的知識(shí)。
學(xué)會(huì)總結(jié)本節(jié)課的知識(shí)點(diǎn),重點(diǎn),做一個(gè)學(xué)會(huì)學(xué)習(xí)的人。及時(shí)總結(jié)所學(xué)的知識(shí)點(diǎn),做一個(gè)學(xué)好習(xí)的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。
建立一個(gè)記錯(cuò)本,錯(cuò)誤的題記錄到本子上。將自己以前做過(guò)的錯(cuò)題,及時(shí)的整理出來(lái),并且能夠及時(shí)的回顧,便于日后在本子上學(xué)習(xí)到知識(shí),能夠復(fù)習(xí)到自己以前錯(cuò)過(guò)的題。
與老師經(jīng)常交流學(xué)習(xí)方法,總有一個(gè)適合你。多多的與老師交流,給老師留下一個(gè)好印象,便于自己和老師更深入的交流學(xué)習(xí),及時(shí)的詢問(wèn)一下高中數(shù)學(xué)的學(xué)習(xí)方法,總有一個(gè)適合自己。
《考試說(shuō)明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過(guò)研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個(gè)問(wèn)題。
命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重?cái)?shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問(wèn)題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問(wèn)題思考;強(qiáng)化主干知識(shí);關(guān)注知識(shí)點(diǎn)的銜接,考察創(chuàng)新意識(shí)。
《考綱》明確指出“創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對(duì)新題型的練習(xí),揭示問(wèn)題的本質(zhì),創(chuàng)造性地解決問(wèn)題。
2.多維審視知識(shí)結(jié)構(gòu)。
高考數(shù)學(xué)試題一直注重對(duì)思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識(shí)在更高層次上的抽象和概括。知識(shí)是思維能力的載體,因此通過(guò)對(duì)知識(shí)的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識(shí)網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對(duì)易錯(cuò)、易混知識(shí)的梳理;要多角度、多方位地去理解問(wèn)題的實(shí)質(zhì);體會(huì)數(shù)學(xué)思想和解題的方法。
3.把答案蓋住看例題。
參考書(shū)上例題不能看一下就過(guò)去了,因?yàn)榭磿r(shí)往往覺(jué)得什么都懂,其實(shí)自己并沒(méi)有理解透徹。所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看,這時(shí)要想一想,自己做的與解答哪里不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。經(jīng)過(guò)上面的`訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目的來(lái)源搞清了,在題后加上幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收益將更大。
4.研究每題都考什么。
數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過(guò)一題聯(lián)想到多題。你需要著重研究解題的思維過(guò)程,弄清基本數(shù)學(xué)知識(shí)和基本數(shù)學(xué)思想在解題中的意義和作用,研究運(yùn)用不同的思維方法解決同一數(shù)學(xué)問(wèn)題的多條途徑,在分析解決問(wèn)題的過(guò)程中既構(gòu)建知識(shí)的橫向聯(lián)系又養(yǎng)成多角度思考問(wèn)題的習(xí)慣。
與其一節(jié)課抓緊時(shí)間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個(gè)概念的多種內(nèi)涵,對(duì)一個(gè)典型題,盡力做到從多條思路用多種方法處理,即一題多解;對(duì)具有共性的問(wèn)題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個(gè)側(cè)面去檢驗(yàn)自己的知識(shí),即一題多變。習(xí)題的價(jià)值不在于做對(duì)、做會(huì),而在于你明白了這道題想考你什么。
5.答題少費(fèi)時(shí)多辦事。
解題上要抓好三個(gè)字:數(shù),式,形;閱讀、審題和表述上要實(shí)現(xiàn)數(shù)學(xué)的三種語(yǔ)言自如轉(zhuǎn)化(文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言)。要重視和加強(qiáng)選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會(huì)優(yōu)化解題過(guò)程,追求解題質(zhì)量,少費(fèi)時(shí),多辦事,以贏得足夠的時(shí)間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗(yàn),盡可能小題小做,除直接法外,還要靈活運(yùn)用特殊值法、排除法、檢驗(yàn)法、數(shù)形結(jié)合法、估計(jì)法來(lái)解題。在做解答題時(shí),書(shū)寫(xiě)要簡(jiǎn)明、扼要、規(guī)范,不要“小題大做”,只要寫(xiě)出“得分點(diǎn)”即可。
6.錯(cuò)一次反思一次。
每次考試或多或少會(huì)發(fā)生一些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤在今后的考試中重現(xiàn)。
因此平時(shí)要注意把錯(cuò)題記下來(lái),做錯(cuò)題筆記包括三個(gè)方面:
(1)記下錯(cuò)誤是什么,最好用紅筆劃出。
(2)錯(cuò)誤原因是什么,從審題、題目歸類、重現(xiàn)知識(shí)和找出答案四個(gè)環(huán)節(jié)來(lái)分析。
(3)錯(cuò)誤糾正方法及注意事項(xiàng)。根據(jù)錯(cuò)誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么在高考時(shí)發(fā)生錯(cuò)誤的概率就會(huì)大大減少。
7.分析試卷總結(jié)經(jīng)驗(yàn)。
每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
(1)遺憾之錯(cuò)。就是分明會(huì)做,反而做錯(cuò)了的題。
(2)似非之錯(cuò)。記憶不準(zhǔn)確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴(yán)密不完整等等。
(3)無(wú)為之錯(cuò)。由于不會(huì)答錯(cuò)了或猜錯(cuò)了,或者根本沒(méi)有作答,這是無(wú)思路、不理解,更談不上應(yīng)用的問(wèn)題。原因找到后就盡早消除遺憾、弄懂似非、力爭(zhēng)有為。切實(shí)解決“會(huì)而不對(duì)、對(duì)而不全”的老大難問(wèn)題。
8.優(yōu)秀是一種習(xí)慣。
柏拉圖說(shuō):“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯(cuò)”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動(dòng)作要快,步步為營(yíng),穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。
地位及重要性。
函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(cè)(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi),函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),也是在研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì),并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用。通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。
教學(xué)目標(biāo)。
(1)了解能用文字語(yǔ)言和符號(hào)語(yǔ)言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;。
(2)了解能用圖形語(yǔ)言正確表述具有單調(diào)性的函數(shù)的圖象特征;。
(4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì);同時(shí)讓學(xué)生體驗(yàn)數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點(diǎn)看問(wèn)題。
教學(xué)重難點(diǎn)。
重點(diǎn)是對(duì)函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解,
二.說(shuō)教法。
根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我嘗試運(yùn)用“問(wèn)題解決”與“多媒體輔助教學(xué)”的.模式。力圖通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題的過(guò)程,讓學(xué)生主動(dòng)參與以達(dá)到對(duì)知識(shí)的“發(fā)現(xiàn)”與接受,進(jìn)而完成對(duì)知識(shí)的內(nèi)化,使書(shū)本知識(shí)成為自己知識(shí);同時(shí)也培養(yǎng)學(xué)生的探索精神。
三.說(shuō)學(xué)法。
在教學(xué)過(guò)程中,教師設(shè)置問(wèn)題情景讓學(xué)生想辦法解決;通過(guò)教師的啟發(fā)點(diǎn)撥,學(xué)生的不斷探索,最終把解決問(wèn)題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過(guò)對(duì)函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問(wèn)題解決。整個(gè)過(guò)程學(xué)生學(xué)生主動(dòng)參與、積極思考、探索嘗試的動(dòng)態(tài)活動(dòng)之中;同時(shí)讓學(xué)生體驗(yàn)到了學(xué)習(xí)數(shù)學(xué)的快樂(lè),培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問(wèn)題的習(xí)慣。
四.說(shuō)過(guò)程。
通過(guò)設(shè)置問(wèn)題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。
設(shè)置問(wèn)題情景。
[引例]學(xué)校準(zhǔn)備建造一個(gè)矩形花壇,面積設(shè)計(jì)為16平方米。由于周圍環(huán)境的限制,其中一邊的長(zhǎng)度長(zhǎng)不能超過(guò)10米,短不能少于4米。記花壇受限制的一邊長(zhǎng)為x米,半周長(zhǎng)為y米。
寫(xiě)出y與x的函數(shù)表達(dá)式;。
(用多媒體出示問(wèn)題,并讓學(xué)生思考)。
對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:
可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。
(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。
(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。
(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。
(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。
如圖所示為a的不同大小影響函數(shù)圖形的情況。
可以看到:
(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過(guò)渡位置。
(6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于x軸,永不相交。
(7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。
文檔為doc格式。
。
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開(kāi)。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:
可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。
(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。
(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。
(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。
(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。
2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問(wèn)題;。
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
指數(shù)函數(shù)圖象的平移變換.
1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。
練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過(guò)的定點(diǎn)坐標(biāo)為.若a1,則當(dāng)x0時(shí),y1;而當(dāng)x0時(shí),y1.若00時(shí),y1;而當(dāng)x0時(shí),y1.
例1解不等式:
(1);(2);。
(3);(4).
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
例2說(shuō)明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫(huà)出它們的示意圖:
(1);(2);(3);(4).
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時(shí),向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時(shí),向上平移,反之向下平移).
練習(xí):
(1)將函數(shù)f(x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù)的圖象.
(2)將函數(shù)f(x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù)的圖象.
(3)將函數(shù)圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是.
(4)對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.函數(shù)y=a2x-1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.
小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問(wèn)題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問(wèn)題就可以找到解決的突破口.
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.
例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時(shí),f(x)=1-2x,試畫(huà)出此函數(shù)的圖象.
例4求函數(shù)的最小值以及取得最小值時(shí)的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來(lái)求解其最值.
練習(xí):
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
(2)函數(shù)y=2x的值域?yàn)?。
(4)當(dāng)x0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
2.指數(shù)型函數(shù)的定點(diǎn)問(wèn)題;。
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
課本p55-6,7.
(1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù)的定義域?yàn)?
(2)對(duì)于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題.
由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過(guò)程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問(wèn)題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過(guò)程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對(duì)知識(shí)的理解與掌握以深入腦中,此時(shí)以類同問(wèn)題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個(gè)過(guò)程,加深了知識(shí)的深刻記憶,對(duì)學(xué)生無(wú)形中鼓舞了氣勢(shì),增強(qiáng)了自信,加大了挑戰(zhàn).而新知識(shí)點(diǎn)的自主探討,對(duì)教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
誘導(dǎo)公式(三)、(四)
給出本節(jié)課的課題
三角函數(shù)誘導(dǎo)公式
標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個(gè)探索過(guò)程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來(lái)知識(shí)點(diǎn)已經(jīng)輕松掌握,同時(shí)也是對(duì)本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符合.(即:函數(shù)名不變,符號(hào)看象限.)
設(shè)計(jì)意圖
簡(jiǎn)便記憶公式.
求下列三角函數(shù)的值:(1).sin( ); (2). co.
設(shè)計(jì)意圖
本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會(huì)靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問(wèn)題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對(duì)具體負(fù)角而言的.
學(xué)生練習(xí)
化簡(jiǎn): .
設(shè)計(jì)意圖
重點(diǎn)加強(qiáng)對(duì)三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
1.小結(jié)使用誘導(dǎo)公式化簡(jiǎn)任意角的三角函數(shù)為銳角的步驟.
2.體會(huì)數(shù)形結(jié)合、對(duì)稱、化歸的思想.
3.“學(xué)會(huì)”學(xué)習(xí)的習(xí)慣.
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設(shè)計(jì)意圖
加強(qiáng)學(xué)生對(duì)三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
八.課后反思
對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對(duì)教材的內(nèi)容,編排了一系列問(wèn)題,讓學(xué)生親歷知識(shí)發(fā)生、發(fā)展的過(guò)程,積極投入到思維活動(dòng)中來(lái),通過(guò)與學(xué)生的互動(dòng)交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開(kāi)中,引導(dǎo)學(xué)生用已學(xué)的知識(shí)、方法予以解決,并獲得知識(shí)體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識(shí)的形成、發(fā)展過(guò)程中展開(kāi)思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、解決問(wèn)題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。
然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來(lái)設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來(lái)武裝自己,讓自己的課堂更有效。
(二)能畫(huà)出簡(jiǎn)單函數(shù)的圖象,會(huì)列表、描點(diǎn)、連線;。
(三)能從圖象上由自變量的值求出對(duì)應(yīng)的函數(shù)的近似值。
重點(diǎn):認(rèn)識(shí)函數(shù)圖象的意義,會(huì)對(duì)簡(jiǎn)單的函數(shù)列表、描點(diǎn)、連線畫(huà)出函數(shù)圖象。
難點(diǎn):對(duì)已恬圖象能讀圖、識(shí)圖,從圖象解釋函數(shù)變化關(guān)系。
1.什么叫函數(shù)?
2.什么叫平面直角坐標(biāo)系?
3.在坐標(biāo)平面內(nèi),什么叫點(diǎn)的橫坐標(biāo)?什么叫點(diǎn)的.縱坐標(biāo)?
4.如果點(diǎn)a的橫坐標(biāo)為3,縱坐標(biāo)為5,請(qǐng)用記號(hào)表示a(3,5).
5.請(qǐng)?jiān)谧鴺?biāo)平面內(nèi)畫(huà)出a點(diǎn)。
6.如果已知一個(gè)點(diǎn)的坐標(biāo),可在坐標(biāo)平面內(nèi)畫(huà)出幾個(gè)點(diǎn)?反過(guò)來(lái),如果坐標(biāo)平面內(nèi)的一個(gè)點(diǎn)確定,這個(gè)點(diǎn)的坐標(biāo)有幾個(gè)?這樣的點(diǎn)和坐標(biāo)的對(duì)應(yīng)關(guān)系,叫做什么對(duì)應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)一一對(duì)應(yīng))。
我們?cè)谇皫坠?jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時(shí),y是x的函數(shù)。
這個(gè)函數(shù)關(guān)系中,y與x的函數(shù)。
這個(gè)函數(shù)關(guān)系中,y與x的對(duì)應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫(huà)出圖象的方法來(lái)表示。
1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.
2.通過(guò)反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力及抽象概括的能力.
3.通過(guò)反函數(shù)的學(xué)習(xí),幫助學(xué)生樹(shù)立辨證唯物主義的世界觀.
重點(diǎn)是反函數(shù)概念的形成與認(rèn)識(shí).
難點(diǎn)是掌握求反函數(shù)的方法.
投影儀。
自主學(xué)習(xí)與啟發(fā)結(jié)合法。
一.揭示課題。
今天我們將學(xué)習(xí)函數(shù)中一個(gè)重要的概念----反函數(shù).
(一)反函數(shù)的概念(板書(shū))。
二.講解新課。
教師首先提出這樣一個(gè)問(wèn)題:在函數(shù)中,如果把當(dāng)作因變量,把當(dāng)作自變量,能否構(gòu)成一個(gè)函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內(nèi)的任一值,按照法則都有唯一的與之相對(duì)應(yīng).(還可以讓學(xué)生畫(huà)出函數(shù)的圖象,從形的角度解釋“任一對(duì)唯一”)。
學(xué)生很快會(huì)意識(shí)到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問(wèn)題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請(qǐng)舉出例子.在教師啟發(fā)下學(xué)生可以舉出象這樣的函數(shù),若將當(dāng)自變量,當(dāng)作因變量,在允許取值范圍內(nèi)一個(gè)可能對(duì)兩個(gè)(可畫(huà)圖輔助說(shuō)明,當(dāng)時(shí),對(duì)應(yīng)),不能構(gòu)成函數(shù),說(shuō)明此函數(shù)沒(méi)有反函數(shù).
通過(guò)剛才的例子,了解了什么是反函數(shù),把對(duì)的反函數(shù)的研究過(guò)程一般化,概括起來(lái)就可以得到反函數(shù)的定義,但這個(gè)數(shù)學(xué)的抽象概括,要求比較高,因此我們一起閱讀書(shū)上相關(guān)的內(nèi)容.
1.反函數(shù)的定義:(板書(shū))(用投影儀打出反函數(shù)的定義)。
為了幫助學(xué)生理解,還可以把定義中的換成某個(gè)具體簡(jiǎn)單的函數(shù)如解釋每一步驟,如得,再判斷它是個(gè)函數(shù),最后改寫(xiě)為.給出定義后,再對(duì)概念作點(diǎn)深入研究.
2.對(duì)概念得理解(板書(shū))。
教師先提出問(wèn)題:反函數(shù)的“反”字應(yīng)當(dāng)是相對(duì)原來(lái)給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來(lái)說(shuō))。
學(xué)生很容易先想到對(duì)應(yīng)法則是“反”過(guò)來(lái)的,把與的位置換位了,教師再追問(wèn)它們的互換還會(huì)帶來(lái)什么變化?啟發(fā)學(xué)生找出另兩個(gè)要素之間的關(guān)系.最后得出結(jié)論:的定義域和值域分別由的值域和定義域決定的.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來(lái)函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡(jiǎn)記為“三定”.
(1)“三定”(板書(shū))。
最后教師進(jìn)一步明確“反”實(shí)際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.
(2)“三反”(板書(shū))。
此時(shí)教師可把問(wèn)題再次引向深入,提出:如果一個(gè)函數(shù)存在反函數(shù),應(yīng)怎樣求這個(gè)反函數(shù)呢?下面我給出兩個(gè)函數(shù),請(qǐng)同學(xué)們根據(jù)自己對(duì)概念的理解來(lái)求一下它們的反函數(shù).
例1.求的反函數(shù).(板書(shū))。
(由學(xué)生說(shuō)求解過(guò)程,有錯(cuò)或不規(guī)范之處,暫時(shí)不追究,待例2解完之后再一起講評(píng))。
解:由得,所求反函數(shù)為.(板書(shū))。
例2.求,的反函數(shù).(板書(shū))。
解:由得,又得,。
故所求反函數(shù)為.(板書(shū))。
求完后教師請(qǐng)同學(xué)們作評(píng)價(jià),學(xué)生之間可以討論,充分暴露表述中得問(wèn)題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見(jiàn),指出例2中問(wèn)題,結(jié)果應(yīng)為,.
教師可先明知故問(wèn),與,有什么不同?讓學(xué)生明確指出兩個(gè)函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問(wèn)從何而來(lái)呢?讓學(xué)生能從三定和三反中找出理由,是從原來(lái)函數(shù)的值域而來(lái).
在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來(lái)函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來(lái)函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過(guò)程.
解:由得,又得,。
又的值域是,。
故所求反函數(shù)為,.
(可能有的學(xué)生會(huì)提出例1中為什么不求原來(lái)函數(shù)的值域的問(wèn)題,此時(shí)不妨讓學(xué)生去具體算一算,會(huì)發(fā)現(xiàn)原來(lái)函數(shù)的值域域求出的函數(shù)解析式中所求定義域時(shí)一致的,所以使得最后結(jié)果沒(méi)有出錯(cuò).但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過(guò)程要求大家一定先求原來(lái)函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時(shí)讓學(xué)生調(diào)整例的表述,將過(guò)程補(bǔ)充完整)。
最后讓學(xué)生一起概括求反函數(shù)的步驟.
3.求反函數(shù)的步驟(板書(shū))。
(1)反解:。
(2)互換。
(3)改寫(xiě):。
對(duì)以上環(huán)節(jié)教師可稍作解釋,然后提出再通過(guò)下面的練習(xí)來(lái)檢驗(yàn)是否真正理解了.
三.鞏固練習(xí)。
練習(xí):求下列函數(shù)的反函數(shù).
(1)(2).(由兩名學(xué)生上黑板寫(xiě))。
解答過(guò)程略.
教師可針對(duì)學(xué)生解答中出現(xiàn)的問(wèn)題,進(jìn)行講評(píng).(如正負(fù)的選取,值域的計(jì)算,符號(hào)的使用)。
四.小結(jié)。
1.對(duì)反函數(shù)概念的認(rèn)識(shí):。
2.求反函數(shù)的基本步驟:。
五.作業(yè)。
課本第68頁(yè)習(xí)題2.4第1題中4,6,8,第2題.
六.板書(shū)設(shè)計(jì)。
2.4反函數(shù)例1.練習(xí).
一.反函數(shù)的概念(1)(2)。
1.定義。
2.對(duì)概念的理解例2.
(1)三定(2)三反。
3.求反函數(shù)的步驟。
(1)反解(2)互換(3)改寫(xiě)。
投影儀
自學(xué)研究與啟發(fā)討論式.
一、復(fù)習(xí)與引入
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過(guò)的函數(shù)例子)
提問(wèn)1.是函數(shù)嗎?
(由學(xué)生討論,發(fā)表各自的意見(jiàn),有的認(rèn)為它不是函數(shù),理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)翻到第50頁(yè),從這開(kāi)始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開(kāi)始提問(wèn))
提問(wèn)2.新的函數(shù)的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.
(板書(shū))2.2函數(shù)
一、函數(shù)的概念
問(wèn)題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書(shū))
然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問(wèn)題,要求從映射的角度解釋.
此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的函數(shù)定義,故是一個(gè)函數(shù),這樣解釋就很自然.
教師繼續(xù)把問(wèn)題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書(shū))
以下關(guān)系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?/p>
由以上兩題可以看出三要素的作用
(1)判斷一個(gè)函數(shù)關(guān)系是否存在.(板書(shū))
(1);(2) (3);(4).
解:先認(rèn)清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)?,是不同的?/p>
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個(gè)函數(shù)是否相同.(板書(shū))
4.對(duì)函數(shù)符號(hào)的理解(板書(shū))
已知函數(shù)試求(板書(shū))
分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.
含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.
三、小結(jié)
1.函數(shù)的定義
2.對(duì)函數(shù)三要素的認(rèn)識(shí)
3.對(duì)函數(shù)符號(hào)的認(rèn)識(shí)
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質(zhì)例2.小結(jié):
3.函數(shù)三要素的認(rèn)識(shí)及作用
4.對(duì)函數(shù)符號(hào)的理解
答案:
一、教學(xué)目標(biāo):
知識(shí)與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實(shí)際應(yīng)用函數(shù)的能力。
過(guò)程與方法:通過(guò)觀察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問(wèn)題的能力。
情感態(tài)度與價(jià)值觀:在指數(shù)函數(shù)的學(xué)習(xí)過(guò)程中,體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)難點(diǎn):對(duì)底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。
三、教學(xué)過(guò)程:
(一)創(chuàng)設(shè)情景。
學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=2x。
問(wèn)題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過(guò)一年剩留的質(zhì)量約是原來(lái)的84%。求出這種物質(zhì)的剩留量隨時(shí)間(單位:年)變化的函數(shù)關(guān)系。設(shè)最初的質(zhì)量為1,時(shí)間變量用x表示,剩留量用y表示。
學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=0.84x。
引導(dǎo)學(xué)生觀察,兩個(gè)函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
問(wèn)題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會(huì)出現(xiàn)什么情況?
(1)若a0會(huì)有什么問(wèn)題?
x1則在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)2(2)若a=0會(huì)有什么問(wèn)題?(對(duì)于x0,a無(wú)意義)。
(3)若a=1又會(huì)怎么樣?(1x無(wú)論x取何值,它總是1,對(duì)它沒(méi)有研究的必要。)。
師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。
1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大小:
設(shè)計(jì)意圖:這是指數(shù)函數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用,使學(xué)生在解題過(guò)程中加深對(duì)指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。
(五)課堂小結(jié)。
(六)布置作業(yè)。
(3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類的定義域.。
2.通過(guò)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高.。
(1)對(duì)記號(hào)有正確的理解,準(zhǔn)確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
(2)在求定義域中注意運(yùn)算的合理性與簡(jiǎn)潔性.。
3.通過(guò)定義由變量觀點(diǎn)向映射觀點(diǎn)的過(guò)渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).。
1.教材分析。
(1)知識(shí)結(jié)構(gòu)。
(2)重點(diǎn)難點(diǎn)分析。
是的定義和符號(hào)的認(rèn)識(shí)與使用.。
2.教法建議。
版權(quán)聲明:此文自動(dòng)收集于網(wǎng)絡(luò),若有來(lái)源錯(cuò)誤或者侵犯您的合法權(quán)益,您可通過(guò)郵箱與我們?nèi)〉寐?lián)系,我們將及時(shí)進(jìn)行處理。
本文地址:http://www.springy.cn/fanwen/moban/318189.html